本讲内容:
Matlab 实现各种回归函数
=========================
基本模型
Y=θ0+θ1X1型---线性回归(直线拟合)
解决过拟合问题---Regularization
Y=1/(1+e^X)型---逻辑回归(sigmod 函数拟合)
在解决拟合问题的解决之前,我们首先回忆一下线性回归和逻辑回归的基本模型。
设待拟合参数 θn*1 和输入参数[ xm*n, ym*1 ] 。
对于各类拟合我们都要根据梯度下降的算法,给出两部分:
① cost function(指出真实值y与拟合值h<hypothesis>之间的距离):给出cost function 的表达式,每次迭代保证cost function的量减小;给出梯度gradient,即cost function对每一个参数θ的求导结果。
function [ jVal,gradient ] = costFunction ( theta )
② Gradient_descent(主函数):用来运行梯度下降算法,调用上面的cost function进行不断迭代,直到最大迭代次数达到给定标准或者cost function返回值不再减小。
function [optTheta,functionVal,exitFlag]=Gradient_descent( )
线性回归:拟合方程为hθ(x)=θ0x0+θ1x1+…+θnxn,当然也可以有xn的幂次方作为线性回归项(如),这与普通意义上的线性不同,而是类似多项式的概念。
其cost function 为:
逻辑回归:拟合方程为hθ(x)=1/(1+e^(θTx)),其cost function 为:
cost function对各θj的求导请自行求取,看第三章最后一图,或者参见后文代码。
后面,我们分别对几个模型方程进行拟合,给出代码,并用matlab中的fit函数进行验证。
在Matlab 线性拟合 & 非线性拟合中我们已经讲过如何用matlab自带函数fit进行直线和曲线的拟合,非常实用。而这里我们是进行ML课程的学习,因此研究如何利用前面讲到的梯度下降法(gradient descent)进行拟合。
function [ jVal,gradient ] = costFunction2( theta )%COSTFUNCTION2 Summary of this function goes here% linear regression -> y=theta0 + theta1*x% parameter: x:m*n theta:n*1 y:m*1 (m=4,n=1)% %Datax=[1;2;3;4];y=[1.1;2.2;2.7;3.8];m=size(x,1);hypothesis = h_func(x,theta);delta = hypothesis - y;jVal=sum(delta.^2);gradient(1)=sum(delta)/m;gradient(2)=sum(delta.*x)/m;end
function [res] = h_func(inputx,theta)%H_FUNC Summary of this function goes here% Detailed explanation goes here%cost function 2res= theta(1)+theta(2)*inputx;function [res] = h_func(inputx,theta)end
function [optTheta,functionVal,exitFlag]=Gradient_descent( )%GRADIENT_DESCENT Summary of this function goes here% Detailed explanation goes here options = optimset('GradObj','on','MaxIter',100); initialTheta = zeros(2,1); [optTheta,functionVal,exitFlag] = fminunc(@costFunction2,initialTheta,options);end
result:
>> [optTheta,functionVal,exitFlag] = Gradient_descent()Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function tolerance.<stopping criteria details>optTheta = 0.3000 0.8600functionVal = 0.0720exitFlag = 1
function [ parameter ] = checkcostfunc( )%CHECKC2 Summary of this function goes here% check if the cost function works well% check with the matlab fit function as standard%check cost function 2x=[1;2;3;4];y=[1.1;2.2;2.7;3.8];EXPR= {'x','1'};p=fittype(EXPR);parameter=fit(x,y,p);end
运行结果:
>> checkcostfunc()ans = Linear model: ans(x) = a*x + b Coefficients (with 95% confidence bounds): a = 0.86 (0.4949, 1.225) b = 0.3 (-0.6998, 1.3)
和我们的结果一样。下面画图:
function PlotFunc( xstart,xend )%PLOTFUNC Summary of this function goes here% draw original data and the fitted %===================cost function 2====linear regression%original datax1=[1;2;3;4];y1=[1.1;2.2;2.7;3.8];%plot(x1,y1,'ro-','MarkerSize',10);plot(x1,y1,'rx','MarkerSize',10);hold on;%fitted line - 拟合曲线x_co=xstart:0.1:xend;y_co=0.3+0.86*x_co;%plot(x_co,y_co,'g');plot(x_co,y_co);hold off;end

在每次迭代中,按照gradient descent的方法更新参数θ:θ(i)-=gradient(i),其中gradient(i)是J(θ)对θi求导的函数式,在此例中就有gradient(1)=2*(theta(1)-5), gradient(2)=2*(theta(2)-5)。
函数costFunction, 定义jVal=J(θ)和对两个θ的gradient:
function [ jVal,gradient ] = costFunction( theta )%COSTFUNCTION Summary of this function goes here% Detailed explanation goes herejVal= (theta(1)-5)^2+(theta(2)-5)^2;gradient = zeros(2,1);%code to compute derivative to thetagradient(1) = 2 * (theta(1)-5);gradient(2) = 2 * (theta(2)-5);end
Gradient_descent,进行参数优化
function [optTheta,functionVal,exitFlag]=Gradient_descent( )%GRADIENT_DESCENT Summary of this function goes here% Detailed explanation goes here options = optimset('GradObj','on','MaxIter',100); initialTheta = zeros(2,1) [optTheta,functionVal,exitFlag] = fminunc(@costFunction,initialTheta,options); end
matlab主窗口中调用,得到优化厚的参数(θ1,θ2)=(5,5)
[optTheta,functionVal,exitFlag] = Gradient_descent()initialTheta = 0 0Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function tolerance.<stopping criteria details>optTheta = 5 5functionVal = 0exitFlag = 1
第四部分:Y=1/(1+e^X)型---逻辑回归(sigmod 函数拟合)
hypothesis function:function [res] = h_func(inputx,theta)%cost function 3tmp=theta(1)+theta(2)*inputx;%m*1res=1./(1+exp(-tmp));%m*1end
cost function:
function [ jVal,gradient ] = costFunction3( theta )%COSTFUNCTION3 Summary of this function goes here% Logistic Regressionx=[-3; -2; -1; 0; 1; 2; 3];y=[0.01; 0.05; 0.3; 0.45; 0.8; 1.1; 0.99];m=size(x,1);%hypothesis datahypothesis = h_func(x,theta);%jVal-cost function & gradient updatingjVal=-sum(log(hypothesis+0.01).*y + (1-y).*log(1-hypothesis+0.01))/m;gradient(1)=sum(hypothesis-y)/m; %reflect to theta1gradient(2)=sum((hypothesis-y).*x)/m; %reflect to theta 2end
Gradient_descent:
function [optTheta,functionVal,exitFlag]=Gradient_descent( ) options = optimset('GradObj','on','MaxIter',100); initialTheta = [0;0]; [optTheta,functionVal,exitFlag] = fminunc(@costFunction3,initialTheta,options);end
运行结果:
[optTheta,functionVal,exitFlag] = Gradient_descent()Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function tolerance.<stopping criteria details>optTheta = 0.3526 1.7573functionVal = 0.2498exitFlag = 1
画图验证:
function PlotFunc( xstart,xend )%PLOTFUNC Summary of this function goes here% draw original data and the fitted %===================cost function 3=====logistic regression%original datax=[-3; -2; -1; 0; 1; 2; 3];y=[0.01; 0.05; 0.3; 0.45; 0.8; 1.1; 0.99];plot(x,y,'rx','MarkerSize',10);hold on%fitted linex_co=xstart:0.1:xend;theta = [0.3526,1.7573];y_co=h_func(x_co,theta);plot(x_co,y_co);hold offend

Reference:
1. http://blog.csdn.net/abcjennifer/article/details/7691571