当前位置: 代码迷 >> GIS >> Linear_regression与 Logistic_regression简略比较与python实现
  详细解决方案

Linear_regression与 Logistic_regression简略比较与python实现

热度:394   发布时间:2016-05-05 06:06:21.0
Linear_regression与 Logistic_regression简单比较与python实现

Linear_regression与 Logistic_regression简单比较与python实现

好久没写博客了,在度厂实习期间更是天天累成了狗的节奏,最近有幸蹭到隔壁组老大小黑黑关于machine learning这块的培训(以下图片均摘自小黑黑的PPT),甚是感动,决定好好学习下这块的东西。

Linear_regression 和 Logistic_regression 其实是非常相似的两种算法。它们都属于监督学习,都可以用梯度下降等方法进行参数的迭代学习等等。
他们最大的不同应该说是 估价函数的不同。

这里写图片描述

此外Linear_regression 的 cost function:
这里写图片描述

Logistic_regression 的 cost function :
这里写图片描述

即我们的最终目标是要求出使得 J(theta)最小时theta的值。采取的方法均为类似梯度下降法的方法。
这里写图片描述

这里写图片描述

最后给出两种算法的python实现:

Linear_regression

import sysMAX_FEATURE_DIMENSION = 1024MAX_SAMPLE_NUMBER = 1024MAX_ITERATE_NUMBER = 1024##求导def compute_gradient(x,y,theta,feature_number,feature_pos,sample_number):    sum = 0.0    for i in range(sample_number):        res = 0.0        for j in range(feature_number+1):            res += x[i][j] * theta[j]        sum += (res - y[i])*x[i][feature_pos]    return sum/sample_number##估价函数def compute_cost(x,y,theta,feature_number,sample_number):    sum = 0.0    for i in range(sample_number):        res = 0.0        for j in range(feature_number+1):            res += x[i][j] * theta[j]        sum += (res - y[i]) * (res - y[i])    return sum/(2*sample_number)##梯度下降法def gradient_descent(x,y,theta,feature_number,sample_number,alpha,iterate_number):    for i in range(iterate_number):        tmp = []        for j in range(MAX_FEATURE_DIMENSION):            tmp.append(0)        for j in range(feature_number+1):            tmp[j] = theta[j] - alpha * compute_gradient(x,y,theta,feature_number,j,sample_number)        for j in range(feature_number+1):            theta[j] = tmp[j]##测试    def predict(theta,x,feature_number):    sum = 0.0    for i in range(feature_number+1):        sum += theta[i]*x[i]    return sumif __name__ == '__main__':    x = [    [1,96.79,2,1,2],    [1,110.39,3,1,0],    [1,70.25,1,0,2],    [1,99.96,2,1,1],    [1,118.15,3,1,0],    [1,115.08,3,1,2]    ]    y = [287,343,199,298,340,350]    sample_number = 6    alpha = 0.0001    iterate_number = 1500    feature_number = 4    theta = []    for i in range(101):        theta.append(0)    gradient_descent(x,y,theta,feature_number,sample_number,alpha,iterate_number)    print compute_cost(x,y,theta,feature_number,sample_number)    testx1 = [1,112,3,1,0]    testx2 = [1,110,3,1,1]    print predict(theta, testx1, 4)    print predict(theta, testx2, 4)

Logistic_regression

import sysimport mathMAX_FEATURE_DIMENSION = 1024MAX_SAMPLE_NUMBER = 1024MAX_ITERATE_NUMBER = 1024##估价函数def sigmoid(z):    return 1 / (1.0 + math.exp(-z))def hypothesis(x, theta, feature_number):    h = 0.0    for i in range(feature_number+1):        h += x[i] * theta[i]    return sigmoid(h)##计算偏导数def compute_gradient(x, y, theta, feature_number, feature_pos, sample_number):    sum = 0.0    for i in range(sample_number):        h = hypothesis(x[i], theta, feature_number)        sum += (h - y[i]) * x[i][feature_pos]    return sum/sample_number##代价def compute_cost(x, y, theta, feature_number, sample_number):    sum = 0.0    for i in range(sample_number):        h = hypothesis(x[i], theta, feature_number)        sum += -y[i] * math.log(h) - (1 - y[i]) * math.log(1 - h)    return sum / sample_number##梯度下降def gradient_descent(x, y, theta, feature_number, sample_number, alpha, iterate_number):    for i in range(iterate_number):        tmp = []        for j in range(MAX_FEATURE_DIMENSION):            tmp.append(0)        for j in range(feature_number + 1):            tmp[j] = theta[j] - alpha * compute_gradient(x, y ,theta, feature_number, j, sample_number)        for j in range(feature_number + 1):            theta[j] = tmp[j]        print compute_cost(x, y, theta, feature_number, sample_number)if __name__ == '__main__':    feature_number = 2    sample_number = 12    alpha = 0.001    iterate_number = 10    x = [    [1, 34.6, 78.0],    [1, 30.2, 43.8],    [1, 35.8, 72.9],    [1, 60.1, 86.3],    [1, 79.0, 75.3],    [1, 45.0, 56.3],    [1, 61.1, 96.5],    [1, 75.0, 46.5],    [1, 76.0, 87.4],    [1, 84.4, 43.5],    [1, 95.8, 38.2],    [1, 75.0, 30.6]    ]    y = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0]    theta = []    for i in range(MAX_FEATURE_DIMENSION):        theta.append(0)        gradient_descent(x, y, theta, feature_number, sample_number, alpha, iterate_number)    outstr = ""    for i in range(3):        outstr += "\t".join([str(theta[i])])    print outstr