当前位置: 代码迷 >> Eclipse >> 怎么使用eclipse调试Hadoop作业
  详细解决方案

怎么使用eclipse调试Hadoop作业

热度:25   发布时间:2016-04-23 00:48:25.0
如何使用eclipse调试Hadoop作业
使用eclipse来调试hadoop作业是非常简洁方便的,散仙以前也有用eclipse开发过hadoop程序,但是一直没有深入了解eclipse调试的一些模式,有些时候也会出一些莫名奇妙的异常,最常见的就是下面这个
java.lang.RuntimeException: java.lang.ClassNotFoundException: com.qin.sort.TestSort$SMapper	at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:857)	at org.apache.hadoop.mapreduce.JobContext.getMapperClass(JobContext.java:199)	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:718)	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)	at org.apache.hadoop.mapred.Child$4.run(Child.java:255)	at java.security.AccessController.doPrivileged(Native Method)	at javax.security.auth.Subject.doAs(Subject.java:415)	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1190)

这个异常是最莫名其妙的一个,明明自己的MR类里面有这个Mapper的内部类,但是一运行程序,就报这个异常,说找不到这个类,然后就百般查找问题,找来找去,也没找出个所以然。

其实这并不是程序的问题,而是对eclipse的调试模式不够了解的问题,eclipse上运行hadoop总的来说有2种模式,第一种就是Local模式,也叫本地模式,第二种就是我们正式的线上集群模式,当运行本地模式的时候,程序并不会被提交到Hadoop集群上,而是基于单机的模式跑的,但是单机的模式,运行的结果仍在是存储在HDFS上的,只不过没有利用hadoop集群的资源,单机的模式不要提交jar包到hadoop集群上,因此一般我们使用local来测试我们的MR程序是否能够正常运行,
下面我们来看下,基于Local模式跑的一个排序作业:

排序数据:a 784b 12c -11dd 99999

程序源码:
package com.qin.sort;import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.WritableComparator;import org.apache.hadoop.mapred.JobConf;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 测试排序的 * MR作业类 *  * QQ技术交流群:324714439 * @author qindongliang *  *  * **/public class TestSort {			/**	 * Map类	 * 	 * **/	private static class SMapper extends Mapper<LongWritable, Text, IntWritable, Text>{				private Text text=new Text();//输出		 private static final IntWritable one=new IntWritable();				@Override		protected void map(LongWritable key, Text value,Context context)				throws IOException, InterruptedException {			String s=value.toString();		 	//System.out.println("abc: "+s);		//	if((s.trim().indexOf(" ")!=-1)){			 String ss[]=s.split(" "); 			 one.set(Integer.parseInt(ss[1].trim()));// 			 text.set(ss[0].trim());   			 context.write(one, text);		}	}		/**	 * Reduce类	 *	 * */	 private static class SReduce extends Reducer<IntWritable, Text, Text, IntWritable>{		 private Text text=new Text();		 @Override		protected void reduce(IntWritable arg0, Iterable<Text> arg1,Context context)				throws IOException, InterruptedException {			 			 			 for(Text t:arg1){				 text.set(t.toString());								 context.write(text, arg0);			 } 		}	 }	 	 /**	  * 排序的类	  * 	  * **/	 private static class SSort extends WritableComparator{		 		 public SSort() {			 super(IntWritable.class,true);//注册排序组件		}		 @Override		public int compare(byte[] arg0, int arg1, int arg2, byte[] arg3,				int arg4, int arg5) {			/**			 * 控制升降序的关键控制-号是降序			 * */			return -super.compare(arg0, arg1, arg2, arg3, arg4, arg5);//注意使用负号来完成降序		}		 		 @Override		public int compare(Object a, Object b) {	 			return    -super.compare(a, b);//注意使用负号来完成降序		}		 		 	 }		 /**	  * main方法	  * */	 public static void main(String[] args) throws Exception{		 String inputPath="hdfs://192.168.75.130:9000/root/output";	    		  String outputPath="hdfs://192.168.75.130:9000/root/outputsort";		  JobConf conf=new JobConf();		//Configuration conf=new Configuration();		   //在你的文件地址前自动添加:hdfs://master:9000/		 // conf.set("fs.default.name", "hdfs://192.168.75.130:9000");		  //指定jobtracker的ip和端口号,master在/etc/hosts中可以配置		//  conf.set("mapred.job.tracker","192.168.75.130:9001");		 // conf.get("mapred.job.tracker");		 System.out.println("模式:  "+conf.get("mapred.job.tracker"));		//  conf.setJar("tt.jar");		  FileSystem  fs=FileSystem.get(conf);		  Path pout=new Path(outputPath);		  if(fs.exists(pout)){			  fs.delete(pout, true);			  System.out.println("存在此路径, 已经删除......");		  } 		  		  Job job=new Job(conf, "sort123");           job.setJarByClass(TestSort.class);          job.setOutputKeyClass(IntWritable.class);//告诉map,reduce输出K,V的类型          FileInputFormat.setInputPaths(job, new Path(inputPath));  //输入路径          FileOutputFormat.setOutputPath(job, new Path(outputPath));//输出路径            job.setMapperClass(SMapper.class);//map类          job.setReducerClass(SReduce.class);//reduce类          job.setSortComparatorClass(SSort.class);//排序类//          job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);//		  job.setOutputFormatClass(TextOutputFormat.class);          System.exit(job.waitForCompletion(true) ? 0 : 1);  		 		 	}	}

打印结果如下:
模式:  local存在此路径, 已经删除......WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicableWARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.WARN - JobClient.copyAndConfigureFiles(870) | No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1WARN - LoadSnappy.<clinit>(46) | Snappy native library not loadedINFO - JobClient.monitorAndPrintJob(1380) | Running job: job_local1242054158_0001INFO - LocalJobRunner$Job.run(340) | Waiting for map tasksINFO - LocalJobRunner$Job$MapTaskRunnable.run(204) | Starting task: attempt_local1242054158_0001_m_000000_0INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : nullINFO - MapTask.runNewMapper(729) | Processing split: hdfs://192.168.75.130:9000/root/output/sort.txt:0+28INFO - MapTask$MapOutputBuffer.<init>(949) | io.sort.mb = 100INFO - MapTask$MapOutputBuffer.<init>(961) | data buffer = 79691776/99614720INFO - MapTask$MapOutputBuffer.<init>(962) | record buffer = 262144/327680INFO - MapTask$MapOutputBuffer.flush(1289) | Starting flush of map outputINFO - MapTask$MapOutputBuffer.sortAndSpill(1471) | Finished spill 0INFO - Task.done(858) | Task:attempt_local1242054158_0001_m_000000_0 is done. And is in the process of commitingINFO - LocalJobRunner$Job.statusUpdate(466) | INFO - Task.sendDone(970) | Task 'attempt_local1242054158_0001_m_000000_0' done.INFO - LocalJobRunner$Job$MapTaskRunnable.run(229) | Finishing task: attempt_local1242054158_0001_m_000000_0INFO - LocalJobRunner$Job.run(348) | Map task executor complete.INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : nullINFO - LocalJobRunner$Job.statusUpdate(466) | INFO - Merger$MergeQueue.merge(408) | Merging 1 sorted segmentsINFO - Merger$MergeQueue.merge(491) | Down to the last merge-pass, with 1 segments left of total size: 35 bytesINFO - LocalJobRunner$Job.statusUpdate(466) | INFO - Task.done(858) | Task:attempt_local1242054158_0001_r_000000_0 is done. And is in the process of commitingINFO - LocalJobRunner$Job.statusUpdate(466) | INFO - Task.commit(1011) | Task attempt_local1242054158_0001_r_000000_0 is allowed to commit nowINFO - FileOutputCommitter.commitTask(173) | Saved output of task 'attempt_local1242054158_0001_r_000000_0' to hdfs://192.168.75.130:9000/root/outputsortINFO - LocalJobRunner$Job.statusUpdate(466) | reduce > reduceINFO - Task.sendDone(970) | Task 'attempt_local1242054158_0001_r_000000_0' done.INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 100%INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_local1242054158_0001INFO - Counters.log(585) | Counters: 19INFO - Counters.log(587) |   File Output Format Counters INFO - Counters.log(589) |     Bytes Written=26INFO - Counters.log(587) |   File Input Format Counters INFO - Counters.log(589) |     Bytes Read=28INFO - Counters.log(587) |   FileSystemCountersINFO - Counters.log(589) |     FILE_BYTES_READ=393INFO - Counters.log(589) |     HDFS_BYTES_READ=56INFO - Counters.log(589) |     FILE_BYTES_WRITTEN=135742INFO - Counters.log(589) |     HDFS_BYTES_WRITTEN=26INFO - Counters.log(587) |   Map-Reduce FrameworkINFO - Counters.log(589) |     Map output materialized bytes=39INFO - Counters.log(589) |     Map input records=4INFO - Counters.log(589) |     Reduce shuffle bytes=0INFO - Counters.log(589) |     Spilled Records=8INFO - Counters.log(589) |     Map output bytes=25INFO - Counters.log(589) |     Total committed heap usage (bytes)=455475200INFO - Counters.log(589) |     Combine input records=0INFO - Counters.log(589) |     SPLIT_RAW_BYTES=112INFO - Counters.log(589) |     Reduce input records=4INFO - Counters.log(589) |     Reduce input groups=4INFO - Counters.log(589) |     Combine output records=0INFO - Counters.log(589) |     Reduce output records=4INFO - Counters.log(589) |     Map output records=4


排序结果如下:
dd	99999a	784b	12c	-11

单机模式调试通过之后,我们就可以考虑采用hadoop集群的模式来跑,这时候有2种方式,可以来完成这件事,第一是,为了方便将整个项目打成一个jar包,上传到Linux上,然后执行shell命令:
bin/hadoop jar tt.jar com.qin.sort.TestSort
来进行测试,注意,散仙是为了方便,路径是写死在程序里面所以后面不用输入,输入和输出路径,正式的开发,为了灵活性,一般会通过外部传产来指定输入和输出路径。

第二种方式,也比较方便,直接在eclipse中提交到hadoop集群作业中,不过即使是使用eclipse来提交作业,还是需要将整个项目打成一个jar包,只不过这时是eclipse帮我们提交作业的,这样我们就可以Win平台上直接提交运行hadoop作业了,但是主流的还是使用上传jar包的方式。关于把整个项目打成一个jar包,散仙在后面会上传一个ant脚本,直接执行它就可以了,这样就可以把有依赖关系的类打在一起,把一整个项目做为一个整体,在hadoop上,只需要指定jar,指定类的全名称,和输入,输出路径即可。ant的脚本内容如下:

<project name="${component.name}" basedir="." default="jar">	<property environment="env"/>	<!--	<property name="hadoop.home" value="${env.HADOOP_HOME}"/>	-->	<property name="hadoop.home" value="D:/hadoop-1.2.0"/>	<!-- 指定jar包的名字 -->	<property name="jar.name" value="tt.jar"/>	<path id="project.classpath">		<fileset dir="lib">			<include name="*.jar" />		</fileset>		<fileset dir="${hadoop.home}">			<include name="**/*.jar" />		</fileset>	</path>	<target name="clean" >	 	<delete dir="bin" failonerror="false" />		<mkdir dir="bin"/> 	</target>		<target name="build" depends="clean"> 		<echo message="${ant.project.name}: ${ant.file}"/> 		<javac destdir="bin" encoding="utf-8" debug="true" includeantruntime="false" debuglevel="lines,vars,source">            <src path="src"/> 			<exclude name="**/.svn" />            <classpath refid="project.classpath"/>        </javac>		<copy todir="bin">			<fileset dir="src">				<include name="*config*"/>			</fileset>		</copy> 	</target>	 	<target name="jar" depends="build"> 		<copy todir="bin/lib"> 			<fileset dir="lib"> 				<include name="**/*.*"/>	 		</fileset> 		</copy> 		 		<path id="lib-classpath"> 			<fileset dir="lib" includes="**/*.jar" /> 		</path> 		 		<pathconvert property="my.classpath" pathsep=" " > 			<mapper> 		    	<chainedmapper> 		        	<!-- 移除绝对路径 --> 		        	<flattenmapper /> 		        	<!-- 加上lib前缀 --> 		        	<globmapper from="*" to="lib/*" /> 		       </chainedmapper> 		     </mapper> 		     <path refid="lib-classpath" /> 		</pathconvert> 		 		<jar basedir="bin" destfile="${jar.name}" > 			<include name="**/*"/> 			<!-- define MANIFEST.MF --> 			<manifest>				<attribute name="Class-Path" value="${my.classpath}" /> 			</manifest> 		</jar> 	</target></project>

运行上面的这个ant脚本之后,我们的项目就会被打成一个jar包,截图如下:


jar包有了之后,我们先测试在eclipse上如何把作业提交到hadoop集群上,只要把main方面的代码,稍加改动即可:
 /**	  * main方法	  * */	 public static void main(String[] args) throws Exception{		 String inputPath="hdfs://192.168.75.130:9000/root/output";	    		  String outputPath="hdfs://192.168.75.130:9000/root/outputsort";		  JobConf conf=new JobConf();		 //Configuration conf=new Configuration();//可以使用这个conf来测试Local模式		 //如果在src目录下有,mapred-site.xml文件,就不要此行代码		 //注意此行代码也是在非Local模式下才使用		 conf.set("mapred.job.tracker","192.168.75.130:9001");		 // conf.get("mapred.job.tracker");		 System.out.println("模式:  "+conf.get("mapred.job.tracker"));		 // conf.setJar("tt.jar"); 非Local模式下使用		  FileSystem  fs=FileSystem.get(conf);		  Path pout=new Path(outputPath);		  if(fs.exists(pout)){			  fs.delete(pout, true);			  System.out.println("存在此路径, 已经删除......");		  } 		  		  Job job=new Job(conf, "sort123");           job.setJarByClass(TestSort.class);          job.setOutputKeyClass(IntWritable.class);//告诉map,reduce输出K,V的类型          FileInputFormat.setInputPaths(job, new Path(inputPath));  //输入路径          FileOutputFormat.setOutputPath(job, new Path(outputPath));//输出路径            job.setMapperClass(SMapper.class);//map类          job.setReducerClass(SReduce.class);//reduce类          job.setSortComparatorClass(SSort.class);//排序类//          job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);//		  job.setOutputFormatClass(TextOutputFormat.class);          System.exit(job.waitForCompletion(true) ? 0 : 1);  		 		 	}


运行程序,输出,如下:
模式:  192.168.75.130:9001存在此路径, 已经删除......WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicableWARN - LoadSnappy.<clinit>(46) | Snappy native library not loadedINFO - JobClient.monitorAndPrintJob(1380) | Running job: job_201403252058_0035INFO - JobClient.monitorAndPrintJob(1393) |  map 0% reduce 0%INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 0%INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 33%INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 100%INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_201403252058_0035INFO - Counters.log(585) | Counters: 29INFO - Counters.log(587) |   Job Counters INFO - Counters.log(589) |     Launched reduce tasks=1INFO - Counters.log(589) |     SLOTS_MILLIS_MAPS=8498INFO - Counters.log(589) |     Total time spent by all reduces waiting after reserving slots (ms)=0INFO - Counters.log(589) |     Total time spent by all maps waiting after reserving slots (ms)=0INFO - Counters.log(589) |     Launched map tasks=1INFO - Counters.log(589) |     Data-local map tasks=1INFO - Counters.log(589) |     SLOTS_MILLIS_REDUCES=9667INFO - Counters.log(587) |   File Output Format Counters INFO - Counters.log(589) |     Bytes Written=26INFO - Counters.log(587) |   FileSystemCountersINFO - Counters.log(589) |     FILE_BYTES_READ=39INFO - Counters.log(589) |     HDFS_BYTES_READ=140INFO - Counters.log(589) |     FILE_BYTES_WRITTEN=117654INFO - Counters.log(589) |     HDFS_BYTES_WRITTEN=26INFO - Counters.log(587) |   File Input Format Counters INFO - Counters.log(589) |     Bytes Read=28INFO - Counters.log(587) |   Map-Reduce FrameworkINFO - Counters.log(589) |     Map output materialized bytes=39INFO - Counters.log(589) |     Map input records=4INFO - Counters.log(589) |     Reduce shuffle bytes=39INFO - Counters.log(589) |     Spilled Records=8INFO - Counters.log(589) |     Map output bytes=25INFO - Counters.log(589) |     Total committed heap usage (bytes)=176033792INFO - Counters.log(589) |     CPU time spent (ms)=1140INFO - Counters.log(589) |     Combine input records=0INFO - Counters.log(589) |     SPLIT_RAW_BYTES=112INFO - Counters.log(589) |     Reduce input records=4INFO - Counters.log(589) |     Reduce input groups=4INFO - Counters.log(589) |     Combine output records=0INFO - Counters.log(589) |     Physical memory (bytes) snapshot=259264512INFO - Counters.log(589) |     Reduce output records=4INFO - Counters.log(589) |     Virtual memory (bytes) snapshot=1460555776INFO - Counters.log(589) |     Map output records=4

我们可以看出,运行正常,排序的内容如下:

dd	99999a	784b	12c	-11

结果和local模式下的一样,还有一个与local模式不同的地方是,我们可以在http://192.168.75.130:50030/jobtracker.jsp的任务页面上找到刚才执行的任务状况,这一点在Local模式下运行程序,是没有的。/size]

[size=large]最后,散仙再来看下,如何将jar包,上传到Linux提交作业到hadoop集群上。刚才,我们已经把jar给打好了,现在只需上传到linux上即可:

然后开始执行shell命令运行程序:



到此,我们已经完美的执行成功,最后一点需要注意的是,在执行排序任务时,如果出现异常:
java.lang.Exception: java.io.IOException: Type mismatch in key from map: expected org.apache.hadoop.io.LongWritable, recieved org.apache.hadoop.io.IntWritable	at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:354)Caused by: java.io.IOException: Type mismatch in key from map: expected org.apache.hadoop.io.LongWritable, recieved org.apache.hadoop.io.IntWritable	at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java:1019)	at org.apache.hadoop.mapred.MapTask$NewOutputCollector.write(MapTask.java:690)	at org.apache.hadoop.mapreduce.TaskInputOutputContext.write(TaskInputOutputContext.java:80)	at com.qin.sort.TestSort$SMapper.map(TestSort.java:51)	at com.qin.sort.TestSort$SMapper.map(TestSort.java:1)	at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:145)	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:764)	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)	at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:223)	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)	at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334)	at java.util.concurrent.FutureTask.run(FutureTask.java:166)	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110)	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603)	at java.lang.Thread.run(Thread.java:722)


这个异常的出现,多半是因为,我们没有指定输出的Key,或者Value,或者指定的类型不一致,导致,我们只需要正确的设置输出的Key或者Value的类型即可.
job.setOutputKeyClass(IntWritable.class);		   job.setOutputValueClass(Text.class);



设置完后,就可以正常测试运行了。





  相关解决方案