问题导读:
1.如何创建MR程序?
2.如何配置运行参数?
3.HADOOP_HOME为空会出现什么问题?
4.hadoop-common-2.2.0-bin-master/bin的作用是什么?
扩展:
4.winutils.exe是什么?
本文总结了两个例子,分别从不同角度。
一、eclipse中开发Hadoop2.x的Map/Reduce项目
本文演示如何在Eclipse中开发一个Map/Reduce项目:
1、环境说明
- Hadoop2.2.0
- Eclipse Juno SR2
- Hadoop2.x-eclipse-plugin 插件的编译安装配置的过程参考:http://www.micmiu.com/bigdata/hadoop/hadoop2-x-eclipse-plugin-build-install/
2、新建MR工程
依次点击 File → New → Ohter…??选择 “Map/Reduce Project”,然后输入项目名称:micmiu_MRDemo,创建新项目:
<ignore_js_op style="word-wrap: break-word;">
?
?
<ignore_js_op style="word-wrap: break-word;">
?
3、创建Mapper和Reducer
依次点击 File → New → Ohter… 选择Mapper,自动继承Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
<ignore_js_op style="word-wrap: break-word;">
?
<ignore_js_op style="word-wrap: break-word;">
?
创建Reducer的过程同Mapper,具体的业务逻辑自己实现即可。
本文就以官方自带的WordCount为例进行测试:
?
- package com.micmiu.mr;
- /**
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements.??See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership.??The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License.??You may obtain a copy of the License at
- *
- *? ???http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- import java.io.IOException;
- import java.util.StringTokenizer;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.util.GenericOptionsParser;
- public class WordCount {
- ??public static class TokenizerMapper?
- ? ?? ? extends Mapper<Object, Text, Text, IntWritable>{
- ? ? private final static IntWritable one = new IntWritable(1);
- ? ? private Text word = new Text();
- ? ? public void map(Object key, Text value, Context context
- ? ?? ?? ?? ?? ?? ???) throws IOException, InterruptedException {
- ? ?? ?StringTokenizer itr = new StringTokenizer(value.toString());
- ? ?? ?while (itr.hasMoreTokens()) {
- ? ?? ???word.set(itr.nextToken());
- ? ?? ???context.write(word, one);
- ? ?? ?}
- ? ? }
- ??}
- ??public static class IntSumReducer?
- ? ?? ? extends Reducer<Text,IntWritable,Text,IntWritable> {
- ? ? private IntWritable result = new IntWritable();
- ? ? public void reduce(Text key, Iterable<IntWritable> values,?
- ? ?? ?? ?? ?? ?? ?? ???Context context
- ? ?? ?? ?? ?? ?? ?? ???) throws IOException, InterruptedException {
- ? ?? ?int sum = 0;
- ? ?? ?for (IntWritable val : values) {
- ? ?? ???sum += val.get();
- ? ?? ?}
- ? ?? ?result.set(sum);
- ? ?? ?context.write(key, result);
- ? ? }
- ??}
- ??public static void main(String[] args) throws Exception {
- ? ? Configuration conf = new Configuration();
- ? ? String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
- ? ? if (otherArgs.length != 2) {
- ? ?? ?System.err.println("Usage: wordcount <in> <out>");
- ? ?? ?System.exit(2);
- ? ? }
- ? ? //conf.set("fs.defaultFS", "hdfs://192.168.6.77:9000");
- ? ? Job job = new Job(conf, "word count");
- ? ? job.setJarByClass(WordCount.class);
- ? ? job.setMapperClass(TokenizerMapper.class);
- ? ? job.setCombinerClass(IntSumReducer.class);
- ? ? job.setReducerClass(IntSumReducer.class);
- ? ? job.setOutputKeyClass(Text.class);
- ? ? job.setOutputValueClass(IntWritable.class);
- ? ? FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
- ? ? FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
- ? ? System.exit(job.waitForCompletion(true) ? 0 : 1);
- ??}
- }
复制代码
4、准备测试数据
micmiu-01.txt:
?
- Hi Michael welcome to Hadoop?
- more see micmiu.com
复制代码
micmiu-02.txt:
- Hi Michael welcome to BigData
- more see micmiu.com
复制代码
micmiu-03.txt:
- Hi Michael welcome to Spark?
- more see micmiu.com
复制代码
把 micmiu 打头的三个文件上传到hdfs:
- micmiu-mbp:Downloads micmiu$ hdfs dfs -copyFromLocal micmiu-*.txt /user/micmiu/test/input
- micmiu-mbp:Downloads micmiu$ hdfs dfs -ls /user/micmiu/test/input
- Found 3 items
- -rw-r--r--? ?1 micmiu supergroup? ?? ?? ?50 2014-04-15 14:53 /user/micmiu/test/input/micmiu-01.txt
- -rw-r--r--? ?1 micmiu supergroup? ?? ?? ?50 2014-04-15 14:53 /user/micmiu/test/input/micmiu-02.txt
- -rw-r--r--? ?1 micmiu supergroup? ?? ?? ?49 2014-04-15 14:53 /user/micmiu/test/input/micmiu-03.txt
- micmiu-mbp:Downloads micmiu$
复制代码
5、配置运行参数
Run As → Run Configurations… ,在Arguments中配置运行参数,例如程序的输入参数:
<ignore_js_op style="word-wrap: break-word;">
?
6、运行
Run As -> Run on Hadoop ,执行完成后可以看到如下信息:
<ignore_js_op style="word-wrap: break-word;">
?
到此Eclipse中调用Hadoop2x本地伪分布式模式执行MR演示成功。
ps:调用集群环境MR运行一直失败,暂时没有找到原因。
上面说了一个整体的过程,下面详细描述了遇到的问题
二、Win7 Eclipse调试Centos Hadoop2.2-Mapreduce
?
1.搭建了一套Centos5.3 + Hadoop2.2 + Hbase0.96.1.1的开发环境,Win7 Eclipse调试MapReduce成功。
MapReduce的配置可以参考http://blog.sina.com.cn/s/blog_546abd9f0101i8b8.html。
安装成功后,能顺利查看以下几个页面,就OK了。我的集群环境是200master,201-203slave。
dfs.http.address? ?192.168.1.200:50070
dfs.secondary.http.address??192.168.1.200:50090
dfs.datanode.http.address??192.168.1.201:50075
yarn.resourcemanager.webapp.address??192.168.1.200:50030
mapreduce.jobhistory.webapp.address 192.168.1.200:19888。这个好像访问不了。需要启动hadoop/sbin/mr-jobhistory-daemon.sh start historyserver才可以访问。
三. Hadoop2.x eclispe-plugin
需要注意一点的是,Hadoop installation directory里填写Win下的hadoop home地址,其目的在于创建MapReduce Project能从这个地方自动引入MapReduce需要的jar。
插件可以从下面下载:
Hadoop 2.2.0编译hadoop-eclipse-plugin插件
hadoop-eclipse-plugin-2.2.0.jar插件包分享
四. 各种问题
1.上面一步完成后,创建一个MapReduce Project,运行时发现出问题了。
- java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
复制代码
跟代码就去发现是HADOOP_HOME的问题。如果HADOOP_HOME为空,必然fullExeName为null\bin\winutils.exe。解决方法很简单啦,乖乖的配置环境变量吧,不想重启电脑可以在MapReduce程序里加上System.setProperty("hadoop.home.dir", "...");暂时缓缓。org.apache.hadoop.util.Shell.java
- ??public static final String getQualifiedBinPath(String executable)?
- ??throws IOException {
- ? ? // construct hadoop bin path to the specified executable
- ? ? String fullExeName = HADOOP_HOME_DIR + File.separator + "bin"?
- ? ?? ?+ File.separator + executable;
- ? ? File exeFile = new File(fullExeName);
- ? ? if (!exeFile.exists()) {
- ? ?? ?throw new IOException("Could not locate executable " + fullExeName
- ? ?? ???+ " in the Hadoop binaries.");
- ? ? }
- ? ? return exeFile.getCanonicalPath();
- ??}
- private static String HADOOP_HOME_DIR = checkHadoopHome();
- private static String checkHadoopHome() {
- ? ? // first check the Dflag hadoop.home.dir with JVM scope
- ? ? String home = System.getProperty("hadoop.home.dir");
- ? ? // fall back to the system/user-global env variable
- ? ? if (home == null) {
- ? ?? ?home = System.getenv("HADOOP_HOME");
- ? ? }
- ? ???...
- }
复制代码
2.这个时候得到完整的地址fullExeName,我机器上是D:\Hadoop\tar\hadoop-2.2.0\hadoop-2.2.0\bin\winutils.exe。继续执行代码又发现了错误
- Could not locate executable D:\Hadoop\tar\hadoop-2.2.0\hadoop-2.2.0\bin\winutils.exe in the Hadoop binaries.
复制代码
就去一看,没有winutils.exe这个东西。去https://github.com/srccodes/hadoop-common-2.2.0-bin下载一个,放就去即可。
3.继续出问题
- at org.apache.hadoop.util.Shell.execCommand(Shell.java:661)
- at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:639)
- at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:435)
复制代码
继续跟代码org.apache.hadoop.util.Shell.java
- ??public static String[] getSetPermissionCommand(String perm, boolean recursive,
- ? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ? String file) {
- ? ? String[] baseCmd = getSetPermissionCommand(perm, recursive);
- ? ? String[] cmdWithFile = Arrays.copyOf(baseCmd, baseCmd.length + 1);
- ? ? cmdWithFile[cmdWithFile.length - 1] = file;
- ? ? return cmdWithFile;
- ??}
- ??/** Return a command to set permission */
- ??public static String[] getSetPermissionCommand(String perm, boolean recursive) {
- ? ? if (recursive) {
- ? ?? ?return (WINDOWS) ? new String[] { WINUTILS, "chmod", "-R", perm }
- ? ?? ?? ?? ?? ?? ?? ?? ? : new String[] { "chmod", "-R", perm };
- ? ? } else {
- ? ?? ?return (WINDOWS) ? new String[] { WINUTILS, "chmod", perm }
- ? ?? ?? ?? ?? ?? ?? ???: new String[] { "chmod", perm };
- ? ? }
- ??}
复制代码
cmdWithFile数组的内容为{"D:\Hadoop\tar\hadoop-2.2.0\hadoop-2.2.0\bin\winutils.exe", "chmod", "755", "xxxfile"},我把这个单独在cmd里执行了一下,发现
无法启动此程序,因为计算机中丢失 MSVCR100.dll??
那就下载一个呗http://files.cnblogs.com/sirkevin/msvcr100.rar,丢到C:\Windows\System32里面。再次cmd执行,又来了问题
下载http://blog.csdn.net/vbcom/article/details/7245186?,DirectX_Repair来解决这个问题吧。记得修复完后要重启电脑。搞定后cmd试一下,很棒。
4.到了这里,已经看到曙光了,但问题又来了
- ? ? /** Windows only method used to check if the current process has requested
- ? ???*??access rights on the given path. */
- ? ? private static native boolean access0(String path, int requestedAccess);
复制代码
显然缺少dll文件,还记得https://github.com/srccodes/hadoop-common-2.2.0-bin下载的东西吧,里面就有hadoop.dll,最好的方法就是用hadoop-common-2.2.0-bin-master/bin目录替换本地hadoop的bin目录,并在环境变量里配置PATH=HADOOP_HOME/bin,重启电脑。
5.终于看到了MapReduce的正确输出output99。
<ignore_js_op style="word-wrap: break-word; color: rgb(68, 68, 68); font-family: Tahoma, 'Microsoft Yahei', Simsun; font-size: 14px; line-height: 21px;">?
五. 总结?
hadoop eclipse插件不是必须的,其作用在我看来就是如下三点(这个是一个错误的认识,具体请参考http://zy19982004.iteye.com/blog/2031172)。study-hadoop是一个普通project,直接运行(不通过Run on Hadoop这只大象),一样可以调试到MapReduce。
对hadoop中的文件可视化。
创建MapReduce Project时帮你引入依赖的jar。
Configuration conf = new Configuration();时就已经包含了所有的配置信息。
还是自己下载hadoop2.2的源码编译好,应该是不会有任何问题的(没有亲测)。
六. 其它问题
1.还是
- Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
复制代码
代码跟到org.apache.hadoop.util.NativeCodeLoader.java去看
- ??static {
- ? ? // Try to load native hadoop library and set fallback flag appropriately
- ? ? if(LOG.isDebugEnabled()) {
- ? ?? ?LOG.debug("Trying to load the custom-built native-hadoop library...");
- ? ? }
- ? ? try {
- ? ?? ?System.loadLibrary("hadoop");
- ? ?? ?LOG.debug("Loaded the native-hadoop library");
- ? ?? ?nativeCodeLoaded = true;
- ? ? } catch (Throwable t) {
- ? ?? ?// Ignore failure to load
- ? ?? ?if(LOG.isDebugEnabled()) {
- ? ?? ???LOG.debug("Failed to load native-hadoop with error: " + t);
- ? ?? ???LOG.debug("java.library.path=" +
- ? ?? ?? ?? ?System.getProperty("java.library.path"));
- ? ?? ?}
- ? ? }
- ? ??
- ? ? if (!nativeCodeLoaded) {
- ? ?? ?LOG.warn("Unable to load native-hadoop library for your platform... " +
- ? ?? ?? ?? ?? ?"using builtin-java classes where applicable");
- ? ? }
- ??}
复制代码
这里报错如下
- DEBUG org.apache.hadoop.util.NativeCodeLoader - Failed to load native-hadoop with error: java.lang.UnsatisfiedLinkError: HADOOP_HOME\bin\hadoop.dll: Can't load AMD 64-bit .dll on a IA 32-bit platform
复制代码
怀疑是32位jdk的问题,替换成64位后,没问题了
- 2014-03-11 19:43:08,805 DEBUG org.apache.hadoop.util.NativeCodeLoader - Trying to load the custom-built native-hadoop library...
- 2014-03-11 19:43:08,812 DEBUG org.apache.hadoop.util.NativeCodeLoader - Loaded the native-hadoop library
复制代码
这里也解决了一个常见的警告
- WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
复制代码
http://www.aboutyun.com/thread-7541-1-1.html