当前位置: 代码迷 >> 数据仓库 >> 机器学习与数据挖掘-K最比邻(KNN)算法的实现(java和python版)
  详细解决方案

机器学习与数据挖掘-K最比邻(KNN)算法的实现(java和python版)

热度:103   发布时间:2016-05-05 15:38:38.0
机器学习与数据挖掘-K最近邻(KNN)算法的实现(java和python版)

KNN算法基础思想前面文章可以参考,这里主要讲解java和python的两种简单实现,也主要是理解简单的思想。

http://blog.csdn.net/u011067360/article/details/23941577

python版本:

这里实现一个手写识别算法,这里只简单识别0~9熟悉,在上篇文章中也展示了手写识别的应用,可以参考:机器学习与数据挖掘-logistic回归及手写识别实例的实现

输入:每个手写数字已经事先处理成32*32的二进制文本,存储为txt文件。0~9每个数字都有10个训练样本,5个测试样本。训练样本集如下图:左边是文件目录,右边是其中一个文件打开显示的结果,看着像1,这里有0~9,每个数字都有是个样本来作为训练集。




第一步:将每个txt文本转化为一个向量,即32*32的数组转化为1*1024的数组,这个1*1024的数组用机器学习的术语来说就是特征向量。

<span style="font-size:14px;">def img2vector(filename):    returnVect = zeros((1,1024))    fr = open(filename)    for i in range(32):        lineStr = fr.readline()        for j in range(32):            returnVect[0,32*i+j] = int(lineStr[j])    return returnVect</span>

第二步:训练样本中有10*10个图片,可以合并成一个100*1024的矩阵,每一行对应一个图片,也就是一个txt文档。

def handwritingClassTest():    hwLabels = []    trainingFileList = listdir('trainingDigits')      print trainingFileList            m = len(trainingFileList)    trainingMat = zeros((m,1024))    for i in range(m):        fileNameStr = trainingFileList[i]                  fileStr = fileNameStr.split('.')[0]        classNumStr = int(fileStr.split('_')[0])         hwLabels.append(classNumStr)        #print hwLabels        #print fileNameStr           trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)        #print trainingMat[i,:]         #print len(trainingMat[i,:])         testFileList = listdir('testDigits')           errorCount = 0.0    mTest = len(testFileList)    for i in range(mTest):        fileNameStr = testFileList[i]        fileStr = fileNameStr.split('.')[0]             classNumStr = int(fileStr.split('_')[0])        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)        if (classifierResult != classNumStr): errorCount += 1.0    print "\nthe total number of errors is: %d" % errorCount    print "\nthe total error rate is: %f" % (errorCount/float(mTest))

第三步:测试样本中有10*5个图片,同样的,对于测试图片,将其转化为1*1024的向量,然后计算它与训练样本中各个图片的“距离”(这里两个向量的距离采用欧式距离),然后对距离排序,选出较小的前k个,因为这k个样本来自训练集,是已知其代表的数字的,所以被测试图片所代表的数字就可以确定为这k个中出现次数最多的那个数字。

def classify0(inX, dataSet, labels, k):    dataSetSize = dataSet.shape[0]    #tile(A,(m,n))       print dataSet    print "----------------"    print tile(inX, (dataSetSize,1))    print "----------------"    diffMat = tile(inX, (dataSetSize,1)) - dataSet          print diffMat    sqDiffMat = diffMat**2    sqDistances = sqDiffMat.sum(axis=1)                      distances = sqDistances**0.5    sortedDistIndicies = distances.argsort()                classCount={}                                          for i in range(k):        voteIlabel = labels[sortedDistIndicies[i]]        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)    return sortedClassCount[0][0]


全部实现代码:
#-*-coding:utf-8-*-from numpy import *import operatorfrom os import listdirdef classify0(inX, dataSet, labels, k):    dataSetSize = dataSet.shape[0]    #tile(A,(m,n))       print dataSet    print "----------------"    print tile(inX, (dataSetSize,1))    print "----------------"    diffMat = tile(inX, (dataSetSize,1)) - dataSet          print diffMat    sqDiffMat = diffMat**2    sqDistances = sqDiffMat.sum(axis=1)                      distances = sqDistances**0.5    sortedDistIndicies = distances.argsort()                classCount={}                                          for i in range(k):        voteIlabel = labels[sortedDistIndicies[i]]        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)    return sortedClassCount[0][0]def img2vector(filename):    returnVect = zeros((1,1024))    fr = open(filename)    for i in range(32):        lineStr = fr.readline()        for j in range(32):            returnVect[0,32*i+j] = int(lineStr[j])    return returnVectdef handwritingClassTest():    hwLabels = []    trainingFileList = listdir('trainingDigits')      print trainingFileList            m = len(trainingFileList)    trainingMat = zeros((m,1024))    for i in range(m):        fileNameStr = trainingFileList[i]                  fileStr = fileNameStr.split('.')[0]        classNumStr = int(fileStr.split('_')[0])         hwLabels.append(classNumStr)        #print hwLabels        #print fileNameStr           trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)        #print trainingMat[i,:]         #print len(trainingMat[i,:])         testFileList = listdir('testDigits')           errorCount = 0.0    mTest = len(testFileList)    for i in range(mTest):        fileNameStr = testFileList[i]        fileStr = fileNameStr.split('.')[0]             classNumStr = int(fileStr.split('_')[0])        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)        if (classifierResult != classNumStr): errorCount += 1.0    print "\nthe total number of errors is: %d" % errorCount    print "\nthe total error rate is: %f" % (errorCount/float(mTest))    handwritingClassTest()    

运行结果:源码文章尾可下载



java版本

先看看训练集和测试集:

训练集:


测试集:



训练集最后一列代表分类(0或者1)


代码实现:

 KNN算法主体类:

package Marchinglearning.knn2;import java.util.ArrayList;import java.util.Comparator;import java.util.HashMap;import java.util.List;import java.util.Map;import java.util.PriorityQueue;/** * KNN算法主体类 */public class KNN {	/**	 * 设置优先级队列的比较函数,距离越大,优先级越高	 */	private Comparator<KNNNode> comparator = new Comparator<KNNNode>() {		public int compare(KNNNode o1, KNNNode o2) {			if (o1.getDistance() >= o2.getDistance()) {				return 1;			} else {				return 0;			}		}	};	/**	 * 获取K个不同的随机数	 * @param k 随机数的个数	 * @param max 随机数最大的范围	 * @return 生成的随机数数组	 */	public List<Integer> getRandKNum(int k, int max) {		List<Integer> rand = new ArrayList<Integer>(k);		for (int i = 0; i < k; i++) {			int temp = (int) (Math.random() * max);			if (!rand.contains(temp)) {				rand.add(temp);			} else {				i--;			}		}		return rand;	}	/**	 * 计算测试元组与训练元组之前的距离	 * @param d1 测试元组	 * @param d2 训练元组	 * @return 距离值	 */	public double calDistance(List<Double> d1, List<Double> d2) {		System.out.println("d1:"+d1+",d2"+d2);		double distance = 0.00;		for (int i = 0; i < d1.size(); i++) {			distance += (d1.get(i) - d2.get(i)) * (d1.get(i) - d2.get(i));		}		return distance;	}	/**	 * 执行KNN算法,获取测试元组的类别	 * @param datas 训练数据集	 * @param testData 测试元组	 * @param k 设定的K值	 * @return 测试元组的类别	 */	public String knn(List<List<Double>> datas, List<Double> testData, int k) {		PriorityQueue<KNNNode> pq = new PriorityQueue<KNNNode>(k, comparator);		List<Integer> randNum = getRandKNum(k, datas.size());		System.out.println("randNum:"+randNum.toString());		for (int i = 0; i < k; i++) {			int index = randNum.get(i);			List<Double> currData = datas.get(index);			String c = currData.get(currData.size() - 1).toString();			System.out.println("currData:"+currData+",c:"+c+",testData"+testData);			//计算测试元组与训练元组之前的距离			KNNNode node = new KNNNode(index, calDistance(testData, currData), c);			pq.add(node);		}		for (int i = 0; i < datas.size(); i++) {			List<Double> t = datas.get(i);			System.out.println("testData:"+testData);			System.out.println("t:"+t);			double distance = calDistance(testData, t);			System.out.println("distance:"+distance);			KNNNode top = pq.peek();			if (top.getDistance() > distance) {				pq.remove();				pq.add(new KNNNode(i, distance, t.get(t.size() - 1).toString()));			}		}				return getMostClass(pq);	}	/**	 * 获取所得到的k个最近邻元组的多数类	 * @param pq 存储k个最近近邻元组的优先级队列	 * @return 多数类的名称	 */	private String getMostClass(PriorityQueue<KNNNode> pq) {		Map<String, Integer> classCount = new HashMap<String, Integer>();		for (int i = 0; i < pq.size(); i++) {			KNNNode node = pq.remove();			String c = node.getC();			if (classCount.containsKey(c)) {				classCount.put(c, classCount.get(c) + 1);			} else {				classCount.put(c, 1);			}		}		int maxIndex = -1;		int maxCount = 0;		Object[] classes = classCount.keySet().toArray();		for (int i = 0; i < classes.length; i++) {			if (classCount.get(classes[i]) > maxCount) {				maxIndex = i;				maxCount = classCount.get(classes[i]);			}		}		return classes[maxIndex].toString();	}}

 KNN结点类,用来存储最近邻的k个元组相关的信息

package Marchinglearning.knn2;/** * KNN结点类,用来存储最近邻的k个元组相关的信息 */public class KNNNode {	private int index; // 元组标号	private double distance; // 与测试元组的距离	private String c; // 所属类别	public KNNNode(int index, double distance, String c) {		super();		this.index = index;		this.distance = distance;		this.c = c;	}			public int getIndex() {		return index;	}	public void setIndex(int index) {		this.index = index;	}	public double getDistance() {		return distance;	}	public void setDistance(double distance) {		this.distance = distance;	}	public String getC() {		return c;	}	public void setC(String c) {		this.c = c;	}}

KNN算法测试类

package Marchinglearning.knn2;import java.io.BufferedReader;import java.io.File;import java.io.FileReader;import java.util.ArrayList;import java.util.List;/** * KNN算法测试类 */public class TestKNN {		/**	 * 从数据文件中读取数据	 * @param datas 存储数据的集合对象	 * @param path 数据文件的路径	 */	public void read(List<List<Double>> datas, String path){		try {			BufferedReader br = new BufferedReader(new FileReader(new File(path)));			String data = br.readLine();			List<Double> l = null;			while (data != null) {				String t[] = data.split(" ");				l = new ArrayList<Double>();				for (int i = 0; i < t.length; i++) {					l.add(Double.parseDouble(t[i]));				}				datas.add(l);				data = br.readLine();			}		} catch (Exception e) {			e.printStackTrace();		}	}		/**	 * 程序执行入口	 * @param args	 */	public static void main(String[] args) {		TestKNN t = new TestKNN();		String datafile = new File("").getAbsolutePath() + File.separator +"knndata2"+File.separator + "datafile.data";		String testfile = new File("").getAbsolutePath() + File.separator +"knndata2"+File.separator +"testfile.data";		System.out.println("datafile:"+datafile);		System.out.println("testfile:"+testfile);		try {			List<List<Double>> datas = new ArrayList<List<Double>>();			List<List<Double>> testDatas = new ArrayList<List<Double>>();			t.read(datas, datafile);			t.read(testDatas, testfile);			KNN knn = new KNN();			for (int i = 0; i < testDatas.size(); i++) {				List<Double> test = testDatas.get(i);				System.out.print("测试元组: ");				for (int j = 0; j < test.size(); j++) {					System.out.print(test.get(j) + " ");				}				System.out.print("类别为: ");				System.out.println(Math.round(Float.parseFloat((knn.knn(datas, test, 3)))));			}		} catch (Exception e) {			e.printStackTrace();		}	}}

运行结果为:



资源下载:

python版本下载

java版本下载











  相关解决方案