在网络上搜索该功能实现方式,
找到大神用python实现
http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search
具体代码
- Python code
#!/usr/bin/pythonimport globimport osimport sysfrom PIL import ImageEXTS = 'jpg', 'jpeg', 'JPG', 'JPEG', 'gif', 'GIF', 'png', 'PNG'def avhash(im): if not isinstance(im, Image.Image): im = Image.open(im) im = im.resize((8, 8), Image.ANTIALIAS).convert('L') avg = reduce(lambda x, y: x + y, im.getdata()) / 64. return reduce(lambda x, (y, z): x | (z << y), enumerate(map(lambda i: 0 if i < avg else 1, im.getdata())), 0)def hamming(h1, h2): h, d = 0, h1 ^ h2 while d: h += 1 d &= d - 1 return hif __name__ == '__main__': if len(sys.argv) <= 1 or len(sys.argv) > 3: print "Usage: %s image.jpg [dir]" % sys.argv[0] else: im, wd = sys.argv[1], '.' if len(sys.argv) < 3 else sys.argv[2] h = avhash(im) os.chdir(wd) images = [] for ext in EXTS: images.extend(glob.glob('*.%s' % ext)) seq = [] prog = int(len(images) > 50 and sys.stdout.isatty()) for f in images: seq.append((f, hamming(avhash(f), h))) if prog: perc = 100. * prog / len(images) x = int(2 * perc / 5) print '\rCalculating... [' + '#' * x + ' ' * (40 - x) + ']', print '%.2f%%' % perc, '(%d/%d)' % (prog, len(images)), sys.stdout.flush() prog += 1 if prog: print for f, ham in sorted(seq, key=lambda i: i[1]): print "%d\t%s" % (ham, f)
现在想把该Python代码转为C#,因不懂python语法,转为C#有点困难,故求论坛高手帮助
python代码实现思路是
第一步,缩小尺寸。
将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。
第二步,简化色彩。
将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。
第三步,计算平均值。
计算所有64个像素的灰度平均值。
第四步,比较像素的灰度。
将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。
第五步,计算哈希值。
大家保持队形,l楼让我先来
------解决方案--------------------------------------------------------
窃以为你这种改代码的方式不可取
现在原理你有了。
技术手段也有了,
只差实现了.
照着别人的代码改一次。没有自己想法,不好。