当前位置: 代码迷 >> Android >> Android2值化算法
  详细解决方案

Android2值化算法

热度:75   发布时间:2016-05-01 20:46:45.0
Android二值化算法
网上找了很多,没有一个能用的,本文的方法是自己在别人的基础上修改而来,纯Java算法,效率没有C++的高,追求效率的可以用Jni,具体参考:http://vaero.blog.51cto.com/4350852/822997
感谢网上分享的朋友们!
有图有真相:





接下来直接上代码:
	public void binarization(Bitmap img) {		width = img.getWidth();		height = img.getHeight();		int area = width * height;		int gray[][] = new int[width][height];		int average = 0;// 灰度平均值		int graysum = 0;		int graymean = 0;		int grayfrontmean = 0;		int graybackmean = 0;		int pixelGray;		int front = 0;		int back = 0;		int[] pix = new int[width * height];		img.getPixels(pix, 0, width, 0, 0, width, height);		for (int i = 1; i < width; i++) { // 不算边界行和列,为避免越界			for (int j = 1; j < height; j++) {				int x = j * width + i;				int r = (pix[x] >> 16) & 0xff;				int g = (pix[x] >> 8) & 0xff;				int b = pix[x] & 0xff;				pixelGray = (int) (0.3 * r + 0.59 * g + 0.11 * b);// 计算每个坐标点的灰度				gray[i][j] = (pixelGray << 16) + (pixelGray << 8) + (pixelGray);				graysum += pixelGray;			}		}		graymean = (int) (graysum / area);// 整个图的灰度平均值		average = graymean;Log.i(TAG,"Average:"+average);		for (int i = 0; i < width; i++) // 计算整个图的二值化阈值		{			for (int j = 0; j < height; j++) {				if (((gray[i][j]) & (0x0000ff)) < graymean) {					graybackmean += ((gray[i][j]) & (0x0000ff));					back++;				} else {					grayfrontmean += ((gray[i][j]) & (0x0000ff));					front++;				}			}		}		int frontvalue = (int) (grayfrontmean / front);// 前景中心		int backvalue = (int) (graybackmean / back);// 背景中心		float G[] = new float[frontvalue - backvalue + 1];// 方差数组		int s = 0;Log.i(TAG,"Front:"+front+"**Frontvalue:"+frontvalue+"**Backvalue:"+backvalue);		for (int i1 = backvalue; i1 < frontvalue + 1; i1++)// 以前景中心和背景中心为区间采用大津法算法(OTSU算法)		{			back = 0;			front = 0;			grayfrontmean = 0;			graybackmean = 0;			for (int i = 0; i < width; i++) {				for (int j = 0; j < height; j++) {					if (((gray[i][j]) & (0x0000ff)) < (i1 + 1)) {						graybackmean += ((gray[i][j]) & (0x0000ff));						back++;					} else {						grayfrontmean += ((gray[i][j]) & (0x0000ff));						front++;					}				}			}			grayfrontmean = (int) (grayfrontmean / front);			graybackmean = (int) (graybackmean / back);			G[s] = (((float) back / area) * (graybackmean - average)					* (graybackmean - average) + ((float) front / area)					* (grayfrontmean - average) * (grayfrontmean - average));			s++;		}		float max = G[0];		int index = 0;		for (int i = 1; i < frontvalue - backvalue + 1; i++) {			if (max < G[i]) {				max = G[i];				index = i;			}		}		for (int i = 0; i < width; i++) {			for (int j = 0; j < height; j++) {				int in = j * width + i;				if (((gray[i][j]) & (0x0000ff)) < (index + backvalue)) {					pix[in] = Color.rgb(0, 0, 0);				} else {					pix[in] = Color.rgb(255, 255, 255);				}			}		}				Bitmap temp = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);		temp.setPixels(pix, 0, width, 0, 0, width, height);		image.setImageBitmap(temp);    }