当前位置: 代码迷 >> Android >> Android 开机卡通源码分析
  详细解决方案

Android 开机卡通源码分析

热度:90   发布时间:2016-04-28 08:07:52.0
Android 开机动画源码分析

Android系统在启动SystemServer进程时,通过两个阶段来启动系统所有服务,在第一阶段启动本地服务,如SurfaceFlinger,SensorService等,在第二阶段则启动一系列的Java服务。开机动画是在什么时候启动的呢?通过查看源码,Android开机动画是在启动SurfaceFlinger服务时启动的。SystemServer的main函数首先调用init1来启动本地服务,init1函数通过JNI调用C语言中的system_init()函数来实现服务启动。

extern "C" status_t system_init(){    sp<ProcessState> proc(ProcessState::self());    sp<IServiceManager> sm = defaultServiceManager();    sp<GrimReaper> grim = new GrimReaper();    sm->asBinder()->linkToDeath(grim, grim.get(), 0);    char propBuf[PROPERTY_VALUE_MAX];    property_get("system_init.startsurfaceflinger", propBuf, "1");    if (strcmp(propBuf, "1") == 0) {        // Start the SurfaceFlinger        SurfaceFlinger::instantiate();    }	...    return NO_ERROR;}
通过调用SurfaceFlinger::instantiate()函数来启动SurfaceFlinger服务,SurfaceFlinger类继承于BinderService模板类,BinderService类的instantiate()函数就是构造对应类型的服务对象,并注册到ServiceManager进程中。

static void instantiate() { publish(); }static status_t publish(bool allowIsolated = false) {	sp<IServiceManager> sm(defaultServiceManager());	return sm->addService(String16(SERVICE::getServiceName()), new SERVICE(), allowIsolated);}

对于SurfaceFlinger服务来说,就是首先构造SurfaceFlinger对象,然后通过调用ServiceManger的远程Binder代理对象的addService函数来注册SurfaceFlinger服务。这里只介绍SurfaceFlinger的构造过程,对于服务注册过程,在Android服务注册完整过程源码分析中已经介绍的非常详细。

SurfaceFlinger::SurfaceFlinger()    :   BnSurfaceComposer(), Thread(false),        mTransactionFlags(0),        mTransationPending(false),        mLayersRemoved(false),        mBootTime(systemTime()),        mVisibleRegionsDirty(false),        mHwWorkListDirty(false),        mElectronBeamAnimationMode(0),        mDebugRegion(0),        mDebugDDMS(0),        mDebugDisableHWC(0),        mDebugDisableTransformHint(0),        mDebugInSwapBuffers(0),        mLastSwapBufferTime(0),        mDebugInTransaction(0),        mLastTransactionTime(0),        mBootFinished(false),        mSecureFrameBuffer(0){    init();}
SurfaceFlinger对象实例的构造过程很简单,就是初始化一些成员变量值,然后调用init()函数来完成初始化工作

void SurfaceFlinger::init(){    char value[PROPERTY_VALUE_MAX];    property_get("debug.sf.showupdates", value, "0");    mDebugRegion = atoi(value);#ifdef DDMS_DEBUGGING    property_get("debug.sf.ddms", value, "0");    mDebugDDMS = atoi(value);    if (mDebugDDMS) {        DdmConnection::start(getServiceName());    }#endif    property_get("ro.bootmode", value, "mode");    if (!(strcmp(value, "engtest")        && strcmp(value, "special")        && strcmp(value, "wdgreboot")        && strcmp(value, "unknowreboot")        && strcmp(value, "panic"))) {        SurfaceFlinger::sBootanimEnable = false;    }}
在SurfaceFlinger的init函数中,也并没有做任何复杂工作,只是简单读取系统属性得到开机模式,来相应设置一些变量而已,比如是否显示开机动画变量sBootanimEnable。由于SurfaceFlinger继承于RefBase类,并重写了该类的onFirstRef()函数,我们知道,RefBase类的子类对象在第一次创建时,会自动调用onFirstRef()函数,因此在SurfaceFlinger对象构造完成时,将调用onFirstRef()函数。

void SurfaceFlinger::onFirstRef(){    mEventQueue.init(this);//事件队列初始化    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);//运行SurfaceFlinger线程    mReadyToRunBarrier.wait();}
这里不对SurfaceFlinger的相关内容做详细介绍,本文的主要内容是介绍开机动画显示过程。由于SurfaceFlinger同时继承于线程Thread类,而且SurfaceFlinger并没有重写Thread类的run方法,因此这里调用SurfaceFlinger的run函数,其实调用的就是其父类Thread的run函数。

status_t Thread::run(const char* name, int32_t priority, size_t stack){    Mutex::Autolock _l(mLock);    if (mRunning) {        return INVALID_OPERATION;    }    mStatus = NO_ERROR;    mExitPending = false;    mThread = thread_id_t(-1);    mHoldSelf = this;    mRunning = true;    bool res;    if (mCanCallJava) {        res = createThreadEtc(_threadLoop,this, name, priority, stack, &mThread);    } else {        res = androidCreateRawThreadEtc(_threadLoop,this, name, priority, stack, &mThread);    }    if (res == false) {        mStatus = UNKNOWN_ERROR;   // something happened!        mRunning = false;        mThread = thread_id_t(-1);        mHoldSelf.clear();  // "this" may have gone away after this.        return UNKNOWN_ERROR;    }    return NO_ERROR;}

该函数就是创建一个线程,并运行现在执行函数_threadLoop

int Thread::_threadLoop(void* user){    Thread* const self = static_cast<Thread*>(user);    sp<Thread> strong(self->mHoldSelf);    wp<Thread> weak(strong);    self->mHoldSelf.clear();#ifdef HAVE_ANDROID_OS    self->mTid = gettid();#endif    bool first = true;    do {        bool result;        if (first) {            first = false;            self->mStatus = self->readyToRun();            result = (self->mStatus == NO_ERROR);            if (result && !self->exitPending()) {                result = self->threadLoop();            }        } else {            result = self->threadLoop();        }        {        Mutex::Autolock _l(self->mLock);        if (result == false || self->mExitPending) {            self->mExitPending = true;            self->mRunning = false;            self->mThread = thread_id_t(-1);            self->mThreadExitedCondition.broadcast();            break;        }        }        strong.clear();        strong = weak.promote();    } while(strong != 0);    return 0;}
在线程开始运行时,变量first为true,因此会调用self->readyToRun()来做一些初始化工作,同时将变量first设置为false,在以后线程执行过程中,就反复执行self->threadLoop()了。作为Thread类的子类SurfaceFlinger重写了这两个方法,因此创建的SurfaceFlinger线程在执行前会调用SurfaceFlinger的readyToRun()函数完成初始化任务,然后反复执行SurfaceFlinger的threadLoop()函数。

status_t SurfaceFlinger::readyToRun(){    ALOGI(   "SurfaceFlinger's main thread ready to run. "            "Initializing graphics H/W...");    int dpy = 0;    {        // initialize the main display        GraphicPlane& plane(graphicPlane(dpy));        DisplayHardware* const hw = new DisplayHardware(this, dpy);        plane.setDisplayHardware(hw);    }    // create the shared control-block    mServerHeap = new MemoryHeapBase(4096,MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");    ALOGE_IF(mServerHeap==0, "can't create shared memory dealer");    mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());    ALOGE_IF(mServerCblk==0, "can't get to shared control block's address");    new(mServerCblk) surface_flinger_cblk_t;    // initialize primary screen    const GraphicPlane& plane(graphicPlane(dpy));    const DisplayHardware& hw = plane.displayHardware();    const uint32_t w = hw.getWidth();    const uint32_t h = hw.getHeight();    const uint32_t f = hw.getFormat();    hw.makeCurrent();    // initialize the shared control block    mServerCblk->connected |= 1<<dpy;    display_cblk_t* dcblk = mServerCblk->displays + dpy;    memset(dcblk, 0, sizeof(display_cblk_t));    dcblk->w            = plane.getWidth();    dcblk->h            = plane.getHeight();    dcblk->format       = f;    dcblk->orientation  = ISurfaceComposer::eOrientationDefault;    dcblk->xdpi         = hw.getDpiX();    dcblk->ydpi         = hw.getDpiY();    dcblk->fps          = hw.getRefreshRate();    dcblk->density      = hw.getDensity();    // Initialize OpenGL|ES    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);    glPixelStorei(GL_PACK_ALIGNMENT, 4);    glEnableClientState(GL_VERTEX_ARRAY);    glShadeModel(GL_FLAT);    glDisable(GL_DITHER);    glDisable(GL_CULL_FACE);    const uint16_t g0 = pack565(0x0F,0x1F,0x0F);    const uint16_t g1 = pack565(0x17,0x2f,0x17);    const uint16_t wormholeTexData[4] = { g0, g1, g1, g0 };    glGenTextures(1, &mWormholeTexName);    glBindTexture(GL_TEXTURE_2D, mWormholeTexName);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,GL_RGB, GL_UNSIGNED_SHORT_5_6_5, wormholeTexData);    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };    glGenTextures(1, &mProtectedTexName);    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);    glViewport(0, 0, w, h);    glMatrixMode(GL_PROJECTION);    glLoadIdentity();    // put the origin in the left-bottom corner    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h    // start the EventThread    mEventThread = new EventThread(this);    mEventQueue.setEventThread(mEventThread);    hw.startSleepManagement();    /*     *  We're now ready to accept clients...     */    mReadyToRunBarrier.open();    // start boot animation    startBootAnim();    return NO_ERROR;}
该函数首先是初始化Android的图形显示系统,启动SurfaceFlinger事件线程,这些内容只有了解了Android的显示原理及SurfaceFlinger服务之后才能理解,这里不做介绍。当显示系统初始化完毕后,调用startBootAnim()函数来显示开机动画。

void SurfaceFlinger::startBootAnim() {    // start boot animation    if(SurfaceFlinger::sBootanimEnable){        property_set("service.bootanim.exit", "0");        property_set("ctl.start", "bootanim");    }}
startBootAnim()函数比较简单,就是通过判断开机动画的变量值了决定是否显示开机动画。启动开机动画进程也是通过Android属性系统来实现的,具体启动过程可以查看Android 系统属性SystemProperty分析。在Android系统启动脚本init.rc中配置了开机动画服务进程。


property_set("ctl.start", "bootanim")就是启动bootanim进程来显示开机动画,该进程对应的源码位于frameworks\base\cmds\bootanimation\bootanimation_main.cpp

int main(int argc, char** argv){#if defined(HAVE_PTHREADS)    setpriority(PRIO_PROCESS, 0, ANDROID_PRIORITY_DISPLAY);#endif    char value[PROPERTY_VALUE_MAX];    property_get("debug.sf.nobootanimation", value, "0");    int noBootAnimation = atoi(value);    ALOGI_IF(noBootAnimation,  "boot animation disabled");    if (!noBootAnimation) {		/*modify  boot animation and added shutdown animation*/		char argvtmp[2][BOOTANIMATION_PATHSET_MAX];		memset(argvtmp[0],0,BOOTANIMATION_PATHSET_MAX);		memset(argvtmp[1],0,BOOTANIMATION_PATHSET_MAX);		//没有参数时,执行开机动画,		if(argc<2){			//开机动画文件BOOTANIMATION_BOOT_FILM_PATH_DEFAULT="/system/media/bootanimation.zip"			strncpy(argvtmp[0],BOOTANIMATION_BOOT_FILM_PATH_DEFAULT,BOOTANIMATION_PATHSET_MAX);			//开机声音文件BOOTANIMATION_BOOT_SOUND_PATH_DEFAULT="/system/media/bootsound.mp3"			strncpy(argvtmp[1],BOOTANIMATION_BOOT_SOUND_PATH_DEFAULT,BOOTANIMATION_PATHSET_MAX);		}else{//否则执行关机动画			//关机动画文件BOOTANIMATION_SHUTDOWN_FILM_PATH_DEFAULT="/system/media/shutdownanimation.zip"			strncpy(argvtmp[0],BOOTANIMATION_SHUTDOWN_FILM_PATH_DEFAULT,BOOTANIMATION_PATHSET_MAX);			//关机声音文件BOOTANIMATION_SHUTDOWN_SOUND_PATH_DEFAULT="/system/media/shutdownsound.mp3"			strncpy(argvtmp[1],BOOTANIMATION_SHUTDOWN_SOUND_PATH_DEFAULT,BOOTANIMATION_PATHSET_MAX);		}		__android_log_print(ANDROID_LOG_INFO,"BootAnimation", "begine bootanimation!");		//启动Binder线程池,用于接收其他进程的请求		sp<ProcessState> proc(ProcessState::self());		ProcessState::self()->startThreadPool();		//创建BootAnimation对象		BootAnimation *boota = new BootAnimation();		String8 descname("desc.txt");		if(argc<2){//设置开机动画文件的默认路径			String8 mpath_default(BOOTANIMATION_BOOT_FILM_PATH_DEFAULT);			String8 spath_default(BOOTANIMATION_BOOT_SOUND_PATH_DEFAULT);			boota->setmoviepath_default(mpath_default);			boota->setsoundpath_default(spath_default);			//boota->setdescname_default(descname_default);		}else {//设置关机动画文件的默认路径			String8 mpath_default(BOOTANIMATION_SHUTDOWN_FILM_PATH_DEFAULT);			String8 spath_default(BOOTANIMATION_SHUTDOWN_SOUND_PATH_DEFAULT);			boota->setmoviepath_default(mpath_default);			boota->setsoundpath_default(spath_default);			//boota->setdescname_default(descname_default);			__android_log_print(ANDROID_LOG_INFO,"BootAnimation","shutdown exe bootanimation!");		}		String8 mpath(argvtmp[0]);		String8 spath(argvtmp[1]);		//设置动画的文件路径		boota->setmoviepath(mpath);		boota->setsoundpath(spath);		boota->setdescname(descname);		__android_log_print(ANDROID_LOG_INFO,"BootAnimation","%s", mpath.string());		__android_log_print(ANDROID_LOG_INFO,"BootAnimation","%s", spath.string());		sp<BootAnimation> bootsp = boota;		//将当前线程注册到Binder线程池中		IPCThreadState::self()->joinThreadPool();	}	return 0;}

该函数构造了一个BootAnimation对象,并且为该对象设置了开关机动画及声音文件路径,同时创建了Binder线程池,并将bootanim进程的主线程注册到Binder线程池中,用于接收客户进程的Binder通信请求。

BootAnimation::BootAnimation() : Thread(false){    mSession = new SurfaceComposerClient();}
在构造BootAnimation对象时,实例化SurfaceComposerClient对象,用于请求SurfaceFlinger显示开关机动画。由于BootAnimation类继承于RefBase,同时重写了onFirstRef()函数,因此在构造BootAnimation对象时,会调用该函数。

void BootAnimation::onFirstRef() {    status_t err = mSession->linkToComposerDeath(this);    ALOGE_IF(err, "linkToComposerDeath failed (%s) ", strerror(-err));    if (err == NO_ERROR) {        run("BootAnimation", PRIORITY_DISPLAY);    }}
该函数首先为SurfaceComposerClient对象注册Binder死亡通知,然后调用BootAnimation的run方法,由于BootAnimation同时继承于Thread类,前面介绍SurfaceFlinger时已经介绍到,当某个类继承于Thread类时,当调用该类的run函数时,函数首先会执行readyToRun()函数来完成线程执行前的一些工作,然后线程反复执行threadLoop()函数,在BootAnimation类中,同样重新了这两个方法

status_t BootAnimation::readyToRun() {    //force screen display in vertical layout    mSession->setOrientation(0, 0, 0);    mAssets.addDefaultAssets();    DisplayInfo dinfo;    status_t status = session()->getDisplayInfo(0, &dinfo);    if (status)        return -1;    // create the native surface    sp<SurfaceControl> control;    if (dinfo.w > dinfo.h) {        control = session()->createSurface(0, dinfo.h, dinfo.w, PIXEL_FORMAT_RGB_565);    } else {        control = session()->createSurface(0, dinfo.w, dinfo.h, PIXEL_FORMAT_RGB_565);    }    SurfaceComposerClient::openGlobalTransaction();    control->setLayer(0x40000000);    SurfaceComposerClient::closeGlobalTransaction();    sp<Surface> s = control->getSurface();    // initialize opengl and egl    const EGLint attribs[] = {            EGL_RED_SIZE,   8,            EGL_GREEN_SIZE, 8,            EGL_BLUE_SIZE,  8,            EGL_DEPTH_SIZE, 0,            EGL_NONE    };    EGLint w, h, dummy;    EGLint numConfigs;    EGLConfig config;    EGLSurface surface;    EGLContext context;    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);    eglInitialize(display, 0, 0);    eglChooseConfig(display, attribs, &config, 1, &numConfigs);    surface = eglCreateWindowSurface(display, config, s.get(), NULL);    context = eglCreateContext(display, config, NULL, NULL);    eglQuerySurface(display, surface, EGL_WIDTH, &w);    eglQuerySurface(display, surface, EGL_HEIGHT, &h);    if (eglMakeCurrent(display, surface, surface, context) == EGL_FALSE)        return NO_INIT;    mDisplay = display;    mContext = context;    mSurface = surface;    mWidth = w;    mHeight = h;    mFlingerSurfaceControl = control;    mFlingerSurface = s;    mAndroidAnimation = true;    // If the device has encryption turned on or is in process     // of being encrypted we show the encrypted boot animation.    char decrypt[PROPERTY_VALUE_MAX];    property_get("vold.decrypt", decrypt, "");    bool encryptedAnimation = atoi(decrypt) != 0 || !strcmp("trigger_restart_min_framework", decrypt);	//如果"/system/media/bootanimation-encrypted.zip"文件存在或者设置的动画文件存在,或者默认动画文件存在,或者"/data/local/bootanimation.zip"文件存在,都显示开机动画文件,否则显示Android滚动字样	if ((encryptedAnimation &&            (access(SYSTEM_ENCRYPTED_BOOTANIMATION_FILE, R_OK) == 0) &&            (mZip.open(SYSTEM_ENCRYPTED_BOOTANIMATION_FILE) == NO_ERROR)) ||            ((access(moviepath, R_OK) == 0) &&            (mZip.open(moviepath) == NO_ERROR)) ||            ((access(movie_default_path, R_OK) == 0) &&            (mZip.open(movie_default_path) == NO_ERROR)) ||            ((access(USER_BOOTANIMATION_FILE, R_OK) == 0) &&            (mZip.open(USER_BOOTANIMATION_FILE) == NO_ERROR))) {        mAndroidAnimation = false;    }    return NO_ERROR;}
在该函数里创建SurfaceControl对象,通过SurfaceControl对象得到Surface对象,并初始化好OpenGL,同时判断动画文件是否存在,如果不存在,则设置标志位mAndroidAnimation为true,表示显示Android滚动字样。当初始化完这些必需资源后,线程进入循环执行体threadLoop()

bool BootAnimation::threadLoop(){    bool r;	//如果mAndroidAnimation为true,表示动画文件不存在,则显示Android滚动字样    if (mAndroidAnimation) {        r = android();    } else {//显示动画        r = movie();    }	//资源回收    eglMakeCurrent(mDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);    eglDestroyContext(mDisplay, mContext);    eglDestroySurface(mDisplay, mSurface);    mFlingerSurface.clear();    mFlingerSurfaceControl.clear();    eglTerminate(mDisplay);    IPCThreadState::self()->stopProcess();    return r;}
开机画面主要是由一个zip格式的压缩包bootanimation.zip组成,压缩包里面包含数张png格式的图片,还有一个desc.txt的文本文档,开机时按desc.txt里面的指令,屏幕上会按文件名称顺序连续的播放一张张的图片,就像播放原始的胶带影片一样,形成动画。desc.txt是一个保存形式为ANSI格式的文件,用于设置这个动画像素(大小),帧数,闪烁次数,文件夹名称等。内容如下:
480 854 10
p 1 2 folder1
p 0 2 folder2

480 427 30  ---这里的480代表图片的像素(大小)宽度,427代表图片的像素(大小)高度,30代表帧数;

p 1 0 part0 ---这里的p代表标志符,1代表循环次数为1次,0代表阶段间隔时间为0,part0代表对应的文件夹名,为第一阶段动画图片目录;

p 0 0 part1---这里的p代表标志符,0代表本阶段无限循环,0代表阶段间隔时间为0,part1代表对应的文件夹名,为第二阶段动画图片目录;

阶段切换间隔时间:单位是一个帧的持续时间,比如帧数是30,那么帧的持续时间就是1秒/30 = 33.3毫秒。阶段切换间隔时间期间开机动画进程进入休眠,把CPU时间让给初始化系统使用。也就是间隔长启动会快,但会影响动画效果。
folder1和folder2文件夹内包含的是两个动画的系列图片,图片为PNG格式。



bool BootAnimation::movie(){    ZipFileRO& zip(mZip);	//获取zip压缩文件中的文件数目    size_t numEntries = zip.getNumEntries();	//打开zip压缩文件中的desc.txt文件    ZipEntryRO desc = zip.findEntryByName("desc.txt");    FileMap* descMap = zip.createEntryFileMap(desc);    ALOGE_IF(!descMap, "descMap is null");    if (!descMap) {        return false;    }	//读取desc.txt文件内容    String8 desString((char const*)descMap->getDataPtr(),descMap->getDataLength());    char const* s = desString.string();    Animation animation;	//读取persist.sys.silence属性来决定是否播放开机音乐    char silence[PROPERTY_VALUE_MAX];    property_get("persist.sys.silence", silence, "0");    if(strcmp("1", silence)==0){        // do something.    }else{        soundplay();    }	//解析desc.txt文件内容    for (;;) {	   //从字符串s中查找是否有字符串"\n",如果有,返回s中"\n"起始位置的指针,如果没有,返回null。        const char* endl = strstr(s, "\n");        if (!endl) break;		//取得文件一行内容        String8 line(s, endl - s);        const char* l = line.string();        int fps, width, height, count, pause;        char path[256];        char pathType;		//从文件第一行中读取宽度,高度,帧数		//480 854 10 <---> width height fps        if (sscanf(l, "%d %d %d", &width, &height, &fps) == 3) {            //LOGD("> w=%d, h=%d, fps=%d", fps, width, height);            animation.width = (width > 0 ? width : mWidth);            animation.height = (height > 0 ? height : mHeight);            animation.fps = fps;		//p 1 2 folder1 <---> pathType count pause path        }else if (sscanf(l, " %c %d %d %s", &pathType, &count, &pause, path) == 4) {            //LOGD("> type=%c, count=%d, pause=%d, path=%s", pathType, count, pause, path);            Animation::Part part;//一个part描述一个动画文件夹内容            part.playUntilComplete = pathType == 'c';            part.count = count;            part.pause = pause;            part.path = path;            animation.parts.add(part);        }        s = ++endl;    }    //读取动画个数    const size_t pcount = animation.parts.size();	//遍历zip压缩包中的所有文件    for (size_t i=0 ; i<numEntries ; i++) {        char name[256];        ZipEntryRO entry = zip.findEntryByIndex(i);		//读取压缩包中的文件名称,所在目录的路径        if (zip.getEntryFileName(entry, name, 256) == 0) {            const String8 entryName(name);            const String8 path(entryName.getPathDir());            const String8 leaf(entryName.getPathLeaf());            if (leaf.size() > 0) {                for (int j=0 ; j<pcount ; j++) {                    if (path == animation.parts[j].path) {                        int method;                        //获取文件信息                        if (zip.getEntryInfo(entry, &method, 0, 0, 0, 0, 0)) {                            if (method == ZipFileRO::kCompressStored) {                                FileMap* map = zip.createEntryFileMap(entry);                                if (map) {                                    Animation::Frame frame;                                    frame.name = leaf;                                    frame.map = map;                                    Animation::Part& part(animation.parts.editItemAt(j));                                    part.frames.add(frame);                                }                            }                        }                    }                }            }        }    }    // clear screen    glShadeModel(GL_FLAT);    glDisable(GL_DITHER);    glDisable(GL_SCISSOR_TEST);    glDisable(GL_BLEND);    glClearColor(0,0,0,1);    glClear(GL_COLOR_BUFFER_BIT);    eglSwapBuffers(mDisplay, mSurface);    glBindTexture(GL_TEXTURE_2D, 0);    glEnable(GL_TEXTURE_2D);    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);    const int xc = (mWidth - animation.width) / 2;    const int yc = ((mHeight - animation.height) / 2);    nsecs_t lastFrame = systemTime();    nsecs_t frameDuration = s2ns(1) / animation.fps;    Region clearReg(Rect(mWidth, mHeight));    clearReg.subtractSelf(Rect(xc, yc, xc+animation.width, yc+animation.height));    for (int i=0 ; i<pcount ; i++) {        const Animation::Part& part(animation.parts[i]);        const size_t fcount = part.frames.size();        glBindTexture(GL_TEXTURE_2D, 0);        for (int r=0 ; !part.count || r<part.count ; r++) {            // Exit any non playuntil complete parts immediately            if(exitPending() && !part.playUntilComplete)                break;            for (int j=0 ; j<fcount && (!exitPending() || part.playUntilComplete) ; j++) {                const Animation::Frame& frame(part.frames[j]);                nsecs_t lastFrame = systemTime();                if (r > 0) {                    glBindTexture(GL_TEXTURE_2D, frame.tid);                } else {                    if (part.count != 1) {                        glGenTextures(1, &frame.tid);                        glBindTexture(GL_TEXTURE_2D, frame.tid);                        glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);                        glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);                    }                    initTexture(                            frame.map->getDataPtr(),                            frame.map->getDataLength());                }                if (!clearReg.isEmpty()) {                    Region::const_iterator head(clearReg.begin());                    Region::const_iterator tail(clearReg.end());                    glEnable(GL_SCISSOR_TEST);                    while (head != tail) {                        const Rect& r(*head++);                        glScissor(r.left, mHeight - r.bottom,                                r.width(), r.height());                        glClear(GL_COLOR_BUFFER_BIT);                    }                    glDisable(GL_SCISSOR_TEST);                }                glDrawTexiOES(xc, yc, 0, animation.width, animation.height);                eglSwapBuffers(mDisplay, mSurface);                nsecs_t now = systemTime();                nsecs_t delay = frameDuration - (now - lastFrame);                //ALOGD("%lld, %lld", ns2ms(now - lastFrame), ns2ms(delay));                lastFrame = now;                if (delay > 0) {                    struct timespec spec;                    spec.tv_sec  = (now + delay) / 1000000000;                    spec.tv_nsec = (now + delay) % 1000000000;                    int err;                    do {                        err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &spec, NULL);                    } while (err<0 && errno == EINTR);                }                checkExit();            }            usleep(part.pause * ns2us(frameDuration));            // For infinite parts, we've now played them at least once, so perhaps exit            if(exitPending() && !part.count)                break;        }        // free the textures for this part        if (part.count != 1) {            for (int j=0 ; j<fcount ; j++) {                const Animation::Frame& frame(part.frames[j]);                glDeleteTextures(1, &frame.tid);            }        }    }    soundstop();    return false;}


  相关解决方案