当前位置: 代码迷 >> Android >> Android Binder进程间通信-登记Service组件-Server处理BC_TRANSACTION
  详细解决方案

Android Binder进程间通信-登记Service组件-Server处理BC_TRANSACTION

热度:52   发布时间:2016-04-28 05:36:35.0
Android Binder进程间通信---注册Service组件---Server处理BC_TRANSACTION

本文参考《Android系统源代码情景分析》,作者罗升阳

一、测试代码:

       ~/Android/external/binder/server

        ----FregServer.cpp

        ~/Android/external/binder/common

        ----IFregService.cpp

        ----IFregService.h

       ~/Android/external/binder/client

       ----FregClient.cpp


       Binder库(libbinder)代码:

       ~/Android/frameworks/base/libs/binder

       ----BpBinder.cpp

       ----Parcel.cpp

       ----ProcessState.cpp

       ----Binder.cpp

       ----IInterface.cpp

       ----IPCThreadState.cpp

       ----IServiceManager.cpp

       ----Static.cpp

       ~/Android/frameworks/base/include/binder

       ----Binder.h

       ----BpBinder.h

       ----IInterface.h

       ----IPCThreadState.h

       ----IServiceManager.h

       ----IBinder.h

       ----Parcel.h

       ----ProcessState.h


        驱动层代码:

       ~/Android//kernel/goldfish/drivers/staging/android

       ----binder.c

       ----binder.h


二、源码分析
       在上一篇文章中,Android Binder进程间通信---注册Service组件---Client发送BC_TRANSACTIONhttp://blog.csdn.net/jltxgcy/article/details/26076149,
       list_add_tail(&t->work.entry, target_list);已经加入到目标进程的todo列表。
       wake_up_interruptible(target_wait);唤醒了目标进程。
       还记得在Andorid Binder进程间通信---启动ServiceManager一文中http://blog.csdn.net/jltxgcy/article/details/25797011,最后进程睡眠等待直到有新的未处理项为止,此时有新的处理项,继续执行binder_thread_read函数。实现如下:

       ~/Android//kernel/goldfish/drivers/staging/android

       ----binder.c

static intbinder_thread_read(struct binder_proc *proc, struct binder_thread *thread,	void  __user *buffer, int size, signed long *consumed, int non_block){	void __user *ptr = buffer + *consumed;	void __user *end = buffer + size;	int ret = 0;	.........	while (1) {		uint32_t cmd;		struct binder_transaction_data tr;		struct binder_work *w;		struct binder_transaction *t = NULL;		if (!list_empty(&thread->todo))			w = list_first_entry(&thread->todo, struct binder_work, entry);		else if (!list_empty(&proc->todo) && wait_for_proc_work)			w = list_first_entry(&proc->todo, struct binder_work, entry);//将要处理的工作项保存在binder_work结构体w中		else {			if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */				goto retry;			break;		}		........		switch (w->type) {		case BINDER_WORK_TRANSACTION: {			t = container_of(w, struct binder_transaction, work);//由于binder_work结构体w的类型为BINDER_WORK_TRANSACTION,即它是一个嵌入在一个binder_transaction结构体中的工作项,因此可以安全地将它转换为一个binder_transaction结构体t		} break;		.........		}		if (!t)			continue;		BUG_ON(t->buffer == NULL);		if (t->buffer->target_node) {			struct binder_node *target_node = t->buffer->target_node;			tr.target.ptr = target_node->ptr;//Binder实体对象ptr为NULL			tr.cookie =  target_node->cookie;//Binder实体对象cookie为NULL			t->saved_priority = task_nice(current);			if (t->priority < target_node->min_priority &&			    !(t->flags & TF_ONE_WAY))				binder_set_nice(t->priority);			else if (!(t->flags & TF_ONE_WAY) ||				 t->saved_priority > target_node->min_priority)				binder_set_nice(target_node->min_priority);			cmd = BR_TRANSACTION;//cmd设置BR_TRANSACTION		} else {			.....		}		tr.code = t->code;//ADD_SERVICE_TRANCATION		tr.flags = t->flags;//TF_ACCEPTS_FDS		tr.sender_euid = t->sender_euid;		if (t->from) {			struct task_struct *sender = t->from->proc->tsk;			tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns);		} else {			.......		}		tr.data_size = t->buffer->data_size;//数据缓冲区大小		tr.offsets_size = t->buffer->offsets_size;//偏移数组大小		tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;//内核缓冲区的内核空间地址和用户空间地址相差一个固定值,并且保存在它的成员变量user_buffer_offset中		tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));//偏移保存在数据缓冲区的后面		if (put_user(cmd, (uint32_t __user *)ptr))//将命令返回			return -EFAULT;		ptr += sizeof(uint32_t);		if (copy_to_user(ptr, &tr, sizeof(tr)))//将binder_transaction_data结构体tr返回			return -EFAULT;		ptr += sizeof(tr);		.......		list_del(&t->work.entry);//删除该任务项		t->buffer->allow_user_free = 1;//允许释放		if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {			t->to_parent = thread->transaction_stack;			t->to_thread = thread;			thread->transaction_stack = t;		} else {			t->buffer->transaction = NULL;			kfree(t);			........		}		break;	}done:	*consumed = ptr - buffer;//cmd和binder_transaction_data结构体tr大小之和	........	return 0;}
       if语句首先检查线程thread自己的todo队列中是否有个工作项需要处理。如果没有,第19行的if语句再检查它所属进程proc的todo队列中是否有工作项需要处理。只要其中的一个todo队列中有工作项需要处理,函数binder_thread_read就将它取出来处理,并且保存在binder_work结构体w中。
       由于binder_work结构体w的类型为BINDER_WORK_TRANSACTION,即它是一个嵌入在一个binder_transaction结构体中的工作项,因此可以安全地将它转换为一个binder_transaction结构体t。
       利用binder_transaction结构体t设置binder_transaction_data结构体tr各参数。并将cmd和binder_transaction_data结构体tr返回到binder_ioctl,然后再返回到binder_loop:
       ~/Android/frameworks/base/cmd/servicemanager
       ----binder.c
void binder_loop(struct binder_state *bs, binder_handler func){    int res;    struct binder_write_read bwr;    unsigned readbuf[32];    bwr.write_size = 0;    bwr.write_consumed = 0;    bwr.write_buffer = 0;        readbuf[0] = BC_ENTER_LOOPER;//首先将BC_ENTER_LOOPER协议写入缓冲区readbuf中    binder_write(bs, readbuf, sizeof(unsigned));//调用binder_write将它发送到Binder驱动程序中    for (;;) {        bwr.read_size = sizeof(readbuf);        bwr.read_consumed = 0;        bwr.read_buffer = (unsigned) readbuf;        res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);//bwr.write_size为0,bwr.read_size不为0        if (res < 0) {            LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));            break;        }        res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);//此时readbuf为cmd和binder_transaction_data结构体tr,bwr.read_consumed为cmd和binder_transaction_data结构体tr大小之和        if (res == 0) {            LOGE("binder_loop: unexpected reply?!\n");            break;        }        if (res < 0) {            LOGE("binder_loop: io error %d %s\n", res, strerror(errno));            break;        }    }}
        开始执行binder_parse。实现如下:
int binder_parse(struct binder_state *bs, struct binder_io *bio,                 uint32_t *ptr, uint32_t size, binder_handler func){    int r = 1;    uint32_t *end = ptr + (size / 4);    while (ptr < end) {        uint32_t cmd = *ptr++;        .......        switch(cmd) {//cmd为BR_TRANSACTION        ......        case BR_TRANSACTION: {            struct binder_txn *txn = (void *) ptr;//binder_transaction_data结构体tr取出放到binder_txt结构体中            ........            if (func) {//svcmgr_handler函数指针                unsigned rdata[256/4];                struct binder_io msg;                struct binder_io reply;                int res;                bio_init(&reply, rdata, sizeof(rdata), 4);                bio_init_from_txn(&msg, txn);                res = func(bs, txn, &msg, &reply);//svcmgr_handler函数指针                binder_send_reply(bs, &reply, txn->data, res);            }            ptr += sizeof(*txn) / sizeof(uint32_t);            break;        }        ......    }    return r;}
      在介绍binder_parse前,首先看几个结构体。
       ~/Android/frameworks/base/cmd/servicemanager
       ----binder.h
struct binder_object{    uint32_t type;    uint32_t flags;    void *pointer;    void *cookie;};struct binder_txn{    void *target;    void *cookie;    uint32_t code;    uint32_t flags;    uint32_t sender_pid;    uint32_t sender_euid;    uint32_t data_size;    uint32_t offs_size;    void *data;    void *offs;};struct binder_io //具体含义见英文注释{    char *data;            /* pointer to read/write from */    uint32_t *offs;        /* array of offsets */    uint32_t data_avail;   /* bytes available in data buffer */    uint32_t offs_avail;   /* entries available in offsets array */    char *data0;           /* start of data buffer */    uint32_t *offs0;       /* start of offsets buffer */    uint32_t flags;    uint32_t unused;};
     结构体binder_txn用来描述进程间通信数据,它等同于前面介绍的binder_transaction_data结构体。
     结构体binder_io用来解析进程间通信数据的,它的作用类似于Binder库中的Parcel类。
     结构体binder_object用来描述进程间通信数据中的一个Binder对象,它等同于结构体flat_binder_object。
     执行binder_parse,首先取出cmd,然后取出binder_transaction_data结构体tr保存在binder_txn结构体txn中。然后调用bio_init函数,实现如下:
       ~/Android/frameworks/base/cmd/servicemanager
       ----binder.c
void bio_init(struct binder_io *bio, void *data,              uint32_t maxdata, uint32_t maxoffs){    uint32_t n = maxoffs * sizeof(uint32_t);//偏移数组所占的大小    if (n > maxdata) {//偏移数组所占的大小不能大于最大能分配大小        bio->flags = BIO_F_OVERFLOW;        bio->data_avail = 0;        bio->offs_avail = 0;        return;    }    bio->data = bio->data0 = data + n;//偏移数组后面是数据缓冲区    bio->offs = bio->offs0 = data;//开始是偏移数组    bio->data_avail = maxdata - n;//数据缓冲区大小    bio->offs_avail = maxoffs;//偏移数组大小    bio->flags = 0;}
      bio_init初始化了binder_io结构体reply。返回binder_parse执行bio_init_from_txn函数,实现如下:
       ~/Android/frameworks/base/cmd/servicemanager
       ----binder.c
void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn){    bio->data = bio->data0 = txn->data;    bio->offs = bio->offs0 = txn->offs;    bio->data_avail = txn->data_size;    bio->offs_avail = txn->offs_size / 4;    bio->flags = BIO_F_SHARED;}
      bio_init_from_txn初始化了binder_io结构体msg。
      返回binder_parse执行svcmgr_handler函数,实现如下:
       ~/Android/frameworks/base/cmd/servicemanager
       ----service_manager.c
int svcmgr_handler(struct binder_state *bs,                   struct binder_txn *txn,                   struct binder_io *msg,                   struct binder_io *reply){    struct svcinfo *si;    uint16_t *s;    unsigned len;    void *ptr;    uint32_t strict_policy;    ......    if (txn->target != svcmgr_handle)//txn->target为NULL,svcmgr_handle为NULL(void* (0))        return -1;    // Equivalent to Parcel::enforceInterface(), reading the RPC    // header with the strict mode policy mask and the interface name.    // Note that we ignore the strict_policy and don't propagate it    // further (since we do no outbound RPCs anyway).    strict_policy = bio_get_uint32(msg);//strict_policy为STRICT_MODE_PENALTY_GATHER    s = bio_get_string16(msg, &len);//s为android.os.IServiceManager    if ((len != (sizeof(svcmgr_id) / 2)) ||        memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {//比较是否一致,如果不一致,直接返回出错        fprintf(stderr,"invalid id %s\n", str8(s));        return -1;    }    switch(txn->code) {//ADD_SERVICE_TRANSACTION,即SVC_MGR_ADD_SERVICE    ........    case SVC_MGR_ADD_SERVICE:        s = bio_get_string16(msg, &len);//s为shy.luo.FregService,len为它的长度        ptr = bio_get_ref(msg);//返回Binder引用对象的句柄值        if (do_add_service(bs, s, len, ptr, txn->sender_euid))            return -1;        break;    .......    bio_put_uint32(reply, 0);    return 0;}
     其中svcmgr_id[]实现如下:
       ~/Android/frameworks/base/cmd/servicemanager
       ----service_manager.c
uint16_t svcmgr_id[] = {     'a','n','d','r','o','i','d','.','o','s','.',    'I','S','e','r','v','i','c','e','M','a','n','a','g','e','r' };
      程序从binder_io结构体msg从获取了3个字符串信息,然后调用bio_get_ref函数返回Binder引用对象的句柄值,实现如下:
       ~/Android/frameworks/base/cmd/servicemanager
       ----binder.c
void *bio_get_ref(struct binder_io *bio){    struct binder_object *obj;    obj = _bio_get_obj(bio);    if (!obj)        return 0;    if (obj->type == BINDER_TYPE_HANDLE)        return obj->pointer;    return 0;}
        _bio_get_obj实现如下:
       ~/Android/frameworks/base/cmd/servicemanager
       ----binder.c
static struct binder_object *_bio_get_obj(struct binder_io *bio){    unsigned n;    unsigned off = bio->data - bio->data0;//flat_binder_object偏移,由于前面获取字符串移动了data        /* TODO: be smarter about this? */    for (n = 0; n < bio->offs_avail; n++) {//offs_avail等于1        if (bio->offs[n] == off)            return bio_get(bio, sizeof(struct binder_object));    }    bio->data_avail = 0;    bio->flags |= BIO_F_OVERFLOW;    return 0;}
       _bio_get_obj首先计算出flat_binder_object偏移,然后看看偏移是否和bio->offs[0]一致,如果一致,那么就调用bio_get函数,实现如下。
       ~/Android/frameworks/base/cmd/servicemanager
       ----binder.c
static void *bio_get(struct binder_io *bio, uint32_t size){    size = (size + 3) & (~3);    if (bio->data_avail < size){        .......    }  else {        void *ptr = bio->data;        bio->data += size;//数据指针增加        bio->data_avail -= size;//可用空间减少        return ptr;//返回了flat_binder_object结构体    }}
      函数返回了flat_binder_object结构体,最后返回到bio_get_ref函数,转换成binder_object结构体指针。由于type等于BINDER_TYPE_HANDLE,所以返回Binder引用对象的句柄值。
  相关解决方案